Spaces:
Sleeping
Sleeping
File size: 18,949 Bytes
ab95a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a new model on one or across multiple GPUs.
"""
import argparse
import logging
import math
import os
import sys
from typing import Dict, Optional, Any, List, Tuple, Callable
# We need to setup root logger before importing any fairseq libraries.
logging.basicConfig(
format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s',
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.train")
import numpy as np
import torch
from fairseq import (
# checkpoint_utils,
options,
quantization_utils,
tasks,
utils,
)
from fairseq.data import iterators
from fairseq.data.plasma_utils import PlasmaStore
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import fsdp_enable_wrap, fsdp_wrap, utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics, progress_bar
from fairseq.model_parallel.megatron_trainer import MegatronTrainer
# from fairseq.trainer import Trainer
from omegaconf import DictConfig, OmegaConf
from utils import checkpoint_utils
from trainer import Trainer
def main(cfg: FairseqConfig) -> None:
if isinstance(cfg, argparse.Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
if distributed_utils.is_master(cfg.distributed_training) and "job_logging_cfg" in cfg:
# make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg))
assert (
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
), "Must specify batch size either with --max-tokens or --batch-size"
metrics.reset()
if cfg.common.log_file is not None:
handler = logging.FileHandler(filename=cfg.common.log_file)
logger.addHandler(handler)
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
if distributed_utils.is_master(cfg.distributed_training):
checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)
# Print args
logger.info(cfg)
if cfg.checkpoint.write_checkpoints_asynchronously:
try:
import iopath # noqa: F401
except ImportError:
logging.exception(
"Asynchronous checkpoint writing is specified but iopath is "
"not installed: `pip install iopath`"
)
return
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(cfg.task)
assert cfg.criterion, "Please specify criterion to train a model"
# Build model and criterion
if cfg.distributed_training.ddp_backend == "fully_sharded":
with fsdp_enable_wrap(cfg.distributed_training):
model = fsdp_wrap(task.build_model(cfg.model))
else:
model = task.build_model(cfg.model)
criterion = task.build_criterion(cfg.criterion)
logger.info(model)
logger.info("task: {}".format(task.__class__.__name__))
logger.info("model: {}".format(model.__class__.__name__))
logger.info("criterion: {}".format(criterion.__class__.__name__))
logger.info(
"num. shared model params: {:,} (num. trained: {:,})".format(
sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False)),
sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False) and p.requires_grad)
)
)
logger.info(
"num. expert model params: {} (num. trained: {})".format(
sum(p.numel() for p in model.parameters() if getattr(p, "expert", False)),
sum(p.numel() for p in model.parameters() if getattr(p, "expert", False) and p.requires_grad),
)
)
# Load valid dataset (we load training data below, based on the latest checkpoint)
# We load the valid dataset AFTER building the model
# data_utils.raise_if_valid_subsets_unintentionally_ignored(cfg)
if cfg.dataset.combine_valid_subsets:
task.load_dataset("valid", combine=True, epoch=1)
else:
for valid_sub_split in cfg.dataset.valid_subset.split(","):
task.load_dataset(valid_sub_split, combine=False, epoch=1)
# (optionally) Configure quantization
if cfg.common.quantization_config_path is not None:
quantizer = quantization_utils.Quantizer(
config_path=cfg.common.quantization_config_path,
max_epoch=cfg.optimization.max_epoch,
max_update=cfg.optimization.max_update,
)
else:
quantizer = None
# Build trainer
if cfg.common.model_parallel_size == 1:
trainer = Trainer(cfg, task, model, criterion, quantizer)
else:
trainer = MegatronTrainer(cfg, task, model, criterion)
logger.info(
"training on {} devices (GPUs/TPUs)".format(
cfg.distributed_training.distributed_world_size
)
)
logger.info(
"max tokens per device = {} and max sentences per device = {}".format(
cfg.dataset.max_tokens,
cfg.dataset.batch_size,
)
)
# Load the latest checkpoint if one is available and restore the
# corresponding train iterator
extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
cfg.checkpoint,
trainer,
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
if cfg.common.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("load_checkpoint") # wait for all workers
max_epoch = cfg.optimization.max_epoch or math.inf
if max_epoch > 0:
num_iter_per_epoch = (len(epoch_itr) + cfg.distributed_training.distributed_world_size - 1) \
// cfg.distributed_training.distributed_world_size
trainer.lr_reinit(num_iter_per_epoch * max_epoch, trainer.get_num_updates())
lr = trainer.get_lr()
train_meter = meters.StopwatchMeter()
train_meter.start()
while epoch_itr.next_epoch_idx <= max_epoch:
if lr <= cfg.optimization.stop_min_lr:
logger.info(
f"stopping training because current learning rate ({lr}) is smaller "
"than or equal to minimum learning rate "
f"(--stop-min-lr={cfg.optimization.stop_min_lr})"
)
break
# train for one epoch
valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
if should_stop:
break
# only use first validation loss to update the learning rate
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
epoch_itr = trainer.get_train_iterator(
epoch_itr.next_epoch_idx,
# sharded data: get train iterator for next epoch
load_dataset=True,
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
train_meter.stop()
logger.info("done training in {:.1f} seconds".format(train_meter.sum))
# ioPath implementation to wait for all asynchronous file writes to complete.
if cfg.checkpoint.write_checkpoints_asynchronously:
logger.info(
"ioPath PathManager waiting for all asynchronous checkpoint "
"writes to finish."
)
PathManager.async_close()
logger.info("ioPath PathManager finished waiting.")
def should_stop_early(cfg: DictConfig, valid_loss: float) -> bool:
# skip check if no validation was done in the current epoch
if valid_loss is None:
return False
if cfg.checkpoint.patience <= 0:
return False
def is_better(a, b):
return a > b if cfg.checkpoint.maximize_best_checkpoint_metric else a < b
prev_best = getattr(should_stop_early, "best", None)
if prev_best is None or is_better(valid_loss, prev_best):
should_stop_early.best = valid_loss
should_stop_early.num_runs = 0
return False
else:
should_stop_early.num_runs += 1
if should_stop_early.num_runs >= cfg.checkpoint.patience:
logger.info(
"early stop since valid performance hasn't improved for last {} runs".format(
cfg.checkpoint.patience
)
)
return True
else:
return False
@metrics.aggregate("train")
def train(
cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr
) -> Tuple[List[Optional[float]], bool]:
"""Train the model for one epoch and return validation losses."""
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(
fix_batches_to_gpus=cfg.distributed_training.fix_batches_to_gpus,
shuffle=(epoch_itr.next_epoch_idx > cfg.dataset.curriculum),
)
update_freq = (
cfg.optimization.update_freq[epoch_itr.epoch - 1]
if epoch_itr.epoch <= len(cfg.optimization.update_freq)
else cfg.optimization.update_freq[-1]
)
itr = iterators.GroupedIterator(itr, update_freq)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_file=cfg.common.log_file,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
azureml_logging=(
cfg.common.azureml_logging
if distributed_utils.is_master(cfg.distributed_training)
else False
),
)
progress.update_config(_flatten_config(cfg))
trainer.begin_epoch(epoch_itr.epoch)
valid_subsets = cfg.dataset.valid_subset.split(",")
should_stop = False
num_updates = trainer.get_num_updates()
logger.info("Start iterating over samples")
for i, samples in enumerate(progress):
with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function(
"train_step-%d" % i
):
log_output = trainer.train_step(samples)
if log_output is not None: # not OOM, overflow, ...
# log mid-epoch stats
num_updates = trainer.get_num_updates()
if num_updates % cfg.common.log_interval == 0:
stats = get_training_stats(metrics.get_smoothed_values("train_inner"))
progress.log(stats, tag="train_inner", step=num_updates)
# reset mid-epoch stats after each log interval
# the end-of-epoch stats will still be preserved
metrics.reset_meters("train_inner")
end_of_epoch = not itr.has_next()
valid_losses, should_stop = validate_and_save(
cfg, trainer, task, epoch_itr, valid_subsets, end_of_epoch
)
if should_stop:
break
# log end-of-epoch stats
logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch))
stats = get_training_stats(metrics.get_smoothed_values("train"))
progress.print(stats, tag="train", step=num_updates)
# reset epoch-level meters
metrics.reset_meters("train")
return valid_losses, should_stop
def _flatten_config(cfg: DictConfig):
config = OmegaConf.to_container(cfg)
# remove any legacy Namespaces and replace with a single "args"
namespace = None
for k, v in list(config.items()):
if isinstance(v, argparse.Namespace):
namespace = v
del config[k]
if namespace is not None:
config["args"] = vars(namespace)
return config
def validate_and_save(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
valid_subsets: List[str],
end_of_epoch: bool,
) -> Tuple[List[Optional[float]], bool]:
num_updates = trainer.get_num_updates()
max_update = cfg.optimization.max_update or math.inf
# Stopping conditions (and an additional one based on validation loss later
# on)
should_stop = False
if num_updates >= max_update:
should_stop = True
logger.info(
f"Stopping training due to "
f"num_updates: {num_updates} >= max_update: {max_update}"
)
training_time_hours = trainer.cumulative_training_time() / (60 * 60)
if (
cfg.optimization.stop_time_hours > 0
and training_time_hours > cfg.optimization.stop_time_hours
):
should_stop = True
logger.info(
f"Stopping training due to "
f"cumulative_training_time: {training_time_hours} > "
f"stop_time_hours: {cfg.optimization.stop_time_hours} hour(s)"
)
do_save = (
(end_of_epoch and epoch_itr.epoch % cfg.checkpoint.save_interval == 0)
or should_stop
or (
cfg.checkpoint.save_interval_updates > 0
and num_updates > 0
and num_updates % cfg.checkpoint.save_interval_updates == 0
and num_updates >= cfg.dataset.validate_after_updates
)
)
do_validate = (
(not end_of_epoch and do_save) # validate during mid-epoch saves
or (end_of_epoch and epoch_itr.epoch % cfg.dataset.validate_interval == 0)
or should_stop
or (
cfg.dataset.validate_interval_updates > 0
and num_updates > 0
and num_updates % cfg.dataset.validate_interval_updates == 0
)
) and not cfg.dataset.disable_validation and num_updates >= cfg.dataset.validate_after_updates
# Validate
valid_losses = [None]
if do_validate:
valid_losses = validate(cfg, trainer, task, epoch_itr, valid_subsets)
should_stop |= should_stop_early(cfg, valid_losses[0])
# Save checkpoint
if do_save or should_stop:
checkpoint_utils.save_checkpoint(
cfg.checkpoint, trainer, epoch_itr, valid_losses[0]
)
return valid_losses, should_stop
def get_training_stats(stats: Dict[str, Any]) -> Dict[str, Any]:
stats["wall"] = round(metrics.get_meter("default", "wall").elapsed_time, 0)
return stats
def validate(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
subsets: List[str],
) -> List[Optional[float]]:
"""Evaluate the model on the validation set(s) and return the losses."""
if cfg.dataset.fixed_validation_seed is not None:
# set fixed seed for every validation
utils.set_torch_seed(cfg.dataset.fixed_validation_seed)
trainer.begin_valid_epoch(epoch_itr.epoch)
valid_losses = []
for subset in subsets:
logger.info('begin validation on "{}" subset'.format(subset))
# Initialize data iterator
itr = trainer.get_valid_iterator(subset).next_epoch_itr(
shuffle=False, set_dataset_epoch=False # use a fixed valid set
)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
prefix=f"valid on '{subset}' subset",
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
)
# create a new root metrics aggregator so validation metrics
# don't pollute other aggregators (e.g., train meters)
with metrics.aggregate(new_root=True) as agg:
for i, sample in enumerate(progress):
if cfg.dataset.max_valid_steps is not None and i > cfg.dataset.max_valid_steps:
break
trainer.valid_step(sample)
# log validation stats
if hasattr(task, 'get_valid_stats'):
stats = task.get_valid_stats(cfg, trainer, agg.get_smoothed_values())
else:
stats = agg.get_smoothed_values()
stats = get_valid_stats(cfg, trainer, stats)
if hasattr(task, "post_validate"):
task.post_validate(trainer.get_model(), stats, agg)
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(stats[cfg.checkpoint.best_checkpoint_metric])
return valid_losses
def get_valid_stats(
cfg: DictConfig, trainer: Trainer, stats: Dict[str, Any]
) -> Dict[str, Any]:
stats["num_updates"] = trainer.get_num_updates()
if hasattr(checkpoint_utils.save_checkpoint, "best"):
key = "best_{0}".format(cfg.checkpoint.best_checkpoint_metric)
best_function = max if cfg.checkpoint.maximize_best_checkpoint_metric else min
stats[key] = best_function(
checkpoint_utils.save_checkpoint.best,
stats[cfg.checkpoint.best_checkpoint_metric],
)
return stats
def cli_main(
modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None
) -> None:
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser, modify_parser=modify_parser)
cfg = convert_namespace_to_omegaconf(args)
if cfg.common.use_plasma_view:
server = PlasmaStore(path=cfg.common.plasma_path)
logger.info(f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}")
if args.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, main)
else:
distributed_utils.call_main(cfg, main)
# if cfg.common.use_plasma_view:
# server.server.kill()
if __name__ == "__main__":
cli_main()
|