File size: 10,856 Bytes
ab95a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
[[Back]](..)

# S2T Example: Speech Translation (ST) on MuST-C

[MuST-C](https://www.aclweb.org/anthology/N19-1202) is multilingual speech-to-text translation corpus with
8-language translations on English TED talks. We match the state-of-the-art performance in
[ESPNet-ST](https://arxiv.org/pdf/2004.10234.pdf) with a simpler model training pipeline.

## Data Preparation
[Download](https://ict.fbk.eu/must-c) and unpack MuST-C data to a path
`${MUSTC_ROOT}/en-${TARGET_LANG_ID}`, then preprocess it with
```bash
# additional Python packages for S2T data processing/model training
pip install pandas torchaudio soundfile sentencepiece

# Generate TSV manifests, features, vocabulary
# and configuration for each language
python examples/speech_to_text/prep_mustc_data.py \
  --data-root ${MUSTC_ROOT} --task asr \
  --vocab-type unigram --vocab-size 5000
python examples/speech_to_text/prep_mustc_data.py \
  --data-root ${MUSTC_ROOT} --task st \
  --vocab-type unigram --vocab-size 8000

# Add vocabulary and configuration for joint data
# (based on the manifests and features generated above)
python examples/speech_to_text/prep_mustc_data.py \
  --data-root ${MUSTC_ROOT} --task asr --joint \
  --vocab-type unigram --vocab-size 10000
python examples/speech_to_text/prep_mustc_data.py \
  --data-root ${MUSTC_ROOT} --task st --joint \
  --vocab-type unigram --vocab-size 10000
```
The generated files (manifest, features, vocabulary and data configuration) will be added to
`${MUSTC_ROOT}/en-${TARGET_LANG_ID}` (per-language data) and `MUSTC_ROOT` (joint data).

Download our vocabulary files if you want to use our pre-trained models:
- ASR: [En-De](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_asr_vocab_unigram5000.zip), [En-Nl](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_asr_vocab_unigram5000.zip), [En-Es](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_asr_vocab_unigram5000.zip), [En-Fr](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_asr_vocab_unigram5000.zip), [En-It](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_asr_vocab_unigram5000.zip), [En-Pt](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_asr_vocab_unigram5000.zip), [En-Ro](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_asr_vocab_unigram5000.zip), [En-Ru](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_asr_vocab_unigram5000.zip), [Joint](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_joint_asr_vocab_unigram10000.zip)
- ST: [En-De](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_st_vocab_unigram8000.zip), [En-Nl](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_st_vocab_unigram8000.zip), [En-Es](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_st_vocab_unigram8000.zip), [En-Fr](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_st_vocab_unigram8000.zip), [En-It](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_st_vocab_unigram8000.zip), [En-Pt](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_st_vocab_unigram8000.zip), [En-Ro](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_st_vocab_unigram8000.zip), [En-Ru](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_st_vocab_unigram8000.zip), [Multilingual](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_multilingual_st_vocab_unigram10000.zip)

## ASR
#### Training
En-De as example:
```bash
fairseq-train ${MUSTC_ROOT}/en-de \
  --config-yaml config_asr.yaml --train-subset train_asr --valid-subset dev_asr \
  --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
  --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
  --arch s2t_transformer_s --optimizer adam --lr 1e-3 --lr-scheduler inverse_sqrt \
  --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
```
For joint model (using ASR data from all 8 directions):
```bash
fairseq-train ${MUSTC_ROOT} \
  --config-yaml config_asr.yaml \
  --train-subset train_de_asr,train_nl_asr,train_es_asr,train_fr_asr,train_it_asr,train_pt_asr,train_ro_asr,train_ru_asr \
  --valid-subset dev_de_asr,dev_nl_asr,dev_es_asr,dev_fr_asr,dev_it_asr,dev_pt_asr,dev_ro_asr,dev_ru_asr \
  --save-dir ${JOINT_ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
  --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
  --arch s2t_transformer_s --optimizer adam --lr 1e-3 --lr-scheduler inverse_sqrt \
  --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
```
where `ASR_SAVE_DIR` (`JOINT_ASR_SAVE_DIR`) is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs
with 1 GPU. You may want to update it accordingly when using more than 1 GPU.

#### Inference & Evaluation
```bash
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
  --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${MUSTC_ROOT}/en-de \
  --config-yaml config_asr.yaml --gen-subset tst-COMMON_asr --task speech_to_text \
  --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
  --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct

# For models trained on joint data
python scripts/average_checkpoints.py \
  --inputs ${JOINT_ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${JOINT_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
for LANG in de nl es fr it pt ro ru; do
  fairseq-generate ${MUSTC_ROOT} \
  --config-yaml config_asr.yaml --gen-subset tst-COMMON_${LANG}_asr --task speech_to_text \
    --path ${JOINT_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
    --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct
done
```
#### Results
| Data | --arch | Params | En-De | En-Nl | En-Es | En-Fr | En-It | En-Pt | En-Ro | En-Ru | Model |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Single | s2t_transformer_s | 31M | [18.2](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_asr_transformer_s.pt) | [17.6](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_asr_transformer_s.pt) | [17.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_asr_transformer_s.pt) | [17.2](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_asr_transformer_s.pt) | [17.9](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_asr_transformer_s.pt) | [19.1](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_asr_transformer_s.pt) | [18.1](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_asr_transformer_s.pt) | [17.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_asr_transformer_s.pt) | (<-Download) |
| Joint | s2t_transformer_m | 76M | 16.8 | 16.7 | 16.9 | 16.9 | 17.0 | 17.4 | 17.0 | 16.9 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_joint_asr_transformer_m.pt) |

## ST
#### Training
En-De as example:
```bash
fairseq-train ${MUSTC_ROOT}/en-de \
  --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \
  --save-dir ${ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
  --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
  --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
  --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
  --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}
```
For multilingual model (all 8 directions):
```bash
fairseq-train ${MUSTC_ROOT} \
  --config-yaml config_st.yaml \
  --train-subset train_de_st,train_nl_st,train_es_st,train_fr_st,train_it_st,train_pt_st,train_ro_st,train_ru_st \
  --valid-subset dev_de_st,dev_nl_st,dev_es_st,dev_fr_st,dev_it_st,dev_pt_st,dev_ro_st,dev_ru_st \
  --save-dir ${MULTILINGUAL_ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
  --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
  --arch s2t_transformer_s --ignore-prefix-size 1 --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
  --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
  --load-pretrained-encoder-from ${JOINT_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}
```
where `ST_SAVE_DIR` (`MULTILINGUAL_ST_SAVE_DIR`) is the checkpoint root path. The ST encoder is pre-trained by ASR
for faster training and better performance: `--load-pretrained-encoder-from <(JOINT_)ASR checkpoint path>`. We set
`--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU.
For multilingual models, we prepend target language ID token as target BOS, which should be excluded from
the training loss via `--ignore-prefix-size 1`.

#### Inference & Evaluation
Average the last 10 checkpoints and evaluate on the `tst-COMMON` split:
```bash
CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
python scripts/average_checkpoints.py \
  --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
fairseq-generate ${MUSTC_ROOT}/en-de \
  --config-yaml config_st.yaml --gen-subset tst-COMMON_st --task speech_to_text \
  --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
  --max-tokens 50000 --beam 5 --scoring sacrebleu

# For multilingual models
python scripts/average_checkpoints.py \
  --inputs ${MULTILINGUAL_ST_SAVE_DIR} --num-epoch-checkpoints 10 \
  --output "${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
for LANG in de nl es fr it pt ro ru; do
  fairseq-generate ${MUSTC_ROOT} \
    --config-yaml config_st.yaml --gen-subset tst-COMMON_${LANG}_st --task speech_to_text \
    --prefix-size 1 --path ${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
    --max-tokens 50000 --beam 5 --scoring sacrebleu
done
```
For multilingual models, we force decoding from the target language ID token (as BOS) via `--prefix-size 1`.

#### Results
| Data | --arch | Params | En-De | En-Nl | En-Es | En-Fr | En-It | En-Pt | En-Ro | En-Ru | Model |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Bilingual | s2t_transformer_s | 31M | [22.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_st_transformer_s.pt) | [27.3](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_st_transformer_s.pt) | [27.2](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_st_transformer_s.pt) | [32.9](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_st_transformer_s.pt) | [22.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_st_transformer_s.pt) | [28.1](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_st_transformer_s.pt) | [21.9](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_st_transformer_s.pt) | [15.3](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_st_transformer_s.pt) | (<-Download) |
| Multilingual | s2t_transformer_m | 76M | 24.5 | 28.6 | 28.2 | 34.9 | 24.6 | 31.1 | 23.8 | 16.0 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_multilingual_st_transformer_m.pt) |

[[Back]](..)