File size: 13,105 Bytes
ab95a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# RoBERTa: A Robustly Optimized BERT Pretraining Approach

https://arxiv.org/abs/1907.11692

## Introduction

RoBERTa iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details.

### What's New:

- December 2020: German model (GottBERT) is available: [GottBERT](https://github.com/pytorch/fairseq/tree/main/examples/gottbert).
- January 2020: Italian model (UmBERTo) is available from Musixmatch Research: [UmBERTo](https://github.com/musixmatchresearch/umberto).
- November 2019: French model (CamemBERT) is available: [CamemBERT](https://github.com/pytorch/fairseq/tree/main/examples/camembert).
- November 2019: Multilingual encoder (XLM-RoBERTa) is available: [XLM-R](https://github.com/pytorch/fairseq/tree/main/examples/xlmr).
- September 2019: TensorFlow and TPU support via the [transformers library](https://github.com/huggingface/transformers).
- August 2019: RoBERTa is now supported in the [pytorch-transformers library](https://github.com/huggingface/pytorch-transformers).
- August 2019: Added [tutorial for finetuning on WinoGrande](https://github.com/pytorch/fairseq/tree/main/examples/roberta/wsc#roberta-training-on-winogrande-dataset).
- August 2019: Added [tutorial for pretraining RoBERTa using your own data](README.pretraining.md).

## Pre-trained models

Model | Description | # params | Download
---|---|---|---
`roberta.base` | RoBERTa using the BERT-base architecture | 125M | [roberta.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz)
`roberta.large` | RoBERTa using the BERT-large architecture | 355M | [roberta.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz)
`roberta.large.mnli` | `roberta.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | 355M | [roberta.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz)
`roberta.large.wsc` | `roberta.large` finetuned on [WSC](wsc/README.md) | 355M | [roberta.large.wsc.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz)

## Results

**[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)**
_(dev set, single model, single-task finetuning)_

Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
---|---|---|---|---|---|---|---|---
`roberta.base` | 87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2
`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
`roberta.large.mnli` | 90.2 | - | - | - | - | - | - | -

**[SuperGLUE (Wang et al., 2019)](https://super.gluebenchmark.com/)**
_(dev set, single model, single-task finetuning)_

Model | BoolQ | CB | COPA | MultiRC | RTE | WiC | WSC
---|---|---|---|---|---|---|---
`roberta.large` | 86.9 | 98.2 | 94.0 | 85.7 | 89.5 | 75.6 | -
`roberta.large.wsc` | - | - | - | - | - | - | 91.3

**[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)**
_(dev set, no additional data used)_

Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
---|---|---
`roberta.large` | 88.9/94.6 | 86.5/89.4

**[RACE (Lai et al., 2017)](http://www.qizhexie.com/data/RACE_leaderboard.html)**
_(test set)_

Model | Accuracy | Middle | High
---|---|---|---
`roberta.large` | 83.2 | 86.5 | 81.3

**[HellaSwag (Zellers et al., 2019)](https://rowanzellers.com/hellaswag/)**
_(test set)_

Model | Overall | In-domain | Zero-shot | ActivityNet | WikiHow
---|---|---|---|---|---
`roberta.large` | 85.2 | 87.3 | 83.1 | 74.6 | 90.9

**[Commonsense QA (Talmor et al., 2019)](https://www.tau-nlp.org/commonsenseqa)**
_(test set)_

Model | Accuracy
---|---
`roberta.large` (single model) | 72.1
`roberta.large` (ensemble) | 72.5

**[Winogrande (Sakaguchi et al., 2019)](https://arxiv.org/abs/1907.10641)**
_(test set)_

Model | Accuracy
---|---
`roberta.large` | 78.1

**[XNLI (Conneau et al., 2018)](https://arxiv.org/abs/1809.05053)**
_(TRANSLATE-TEST)_

Model | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---
`roberta.large.mnli` | 91.3 | 82.91 | 84.27 | 81.24 | 81.74 | 83.13 | 78.28 | 76.79 | 76.64 | 74.17 | 74.05 | 77.5 | 70.9 | 66.65 | 66.81

## Example usage

##### Load RoBERTa from torch.hub (PyTorch >= 1.1):
```python
import torch
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
roberta.eval()  # disable dropout (or leave in train mode to finetune)
```

##### Load RoBERTa (for PyTorch 1.0 or custom models):
```python
# Download roberta.large model
wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
tar -xzvf roberta.large.tar.gz

# Load the model in fairseq
from fairseq.models.roberta import RobertaModel
roberta = RobertaModel.from_pretrained('/path/to/roberta.large', checkpoint_file='model.pt')
roberta.eval()  # disable dropout (or leave in train mode to finetune)
```

##### Apply Byte-Pair Encoding (BPE) to input text:
```python
tokens = roberta.encode('Hello world!')
assert tokens.tolist() == [0, 31414, 232, 328, 2]
roberta.decode(tokens)  # 'Hello world!'
```

##### Extract features from RoBERTa:
```python
# Extract the last layer's features
last_layer_features = roberta.extract_features(tokens)
assert last_layer_features.size() == torch.Size([1, 5, 1024])

# Extract all layer's features (layer 0 is the embedding layer)
all_layers = roberta.extract_features(tokens, return_all_hiddens=True)
assert len(all_layers) == 25
assert torch.all(all_layers[-1] == last_layer_features)
```

##### Use RoBERTa for sentence-pair classification tasks:
```python
# Download RoBERTa already finetuned for MNLI
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
roberta.eval()  # disable dropout for evaluation

# Encode a pair of sentences and make a prediction
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.')
roberta.predict('mnli', tokens).argmax()  # 0: contradiction

# Encode another pair of sentences
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.')
roberta.predict('mnli', tokens).argmax()  # 2: entailment
```

##### Register a new (randomly initialized) classification head:
```python
roberta.register_classification_head('new_task', num_classes=3)
logprobs = roberta.predict('new_task', tokens)  # tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=<LogSoftmaxBackward>)
```

##### Batched prediction:
```python
import torch
from fairseq.data.data_utils import collate_tokens

roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
roberta.eval()

batch_of_pairs = [
    ['Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.'],
    ['Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.'],
    ['potatoes are awesome.', 'I like to run.'],
    ['Mars is very far from earth.', 'Mars is very close.'],
]

batch = collate_tokens(
    [roberta.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1
)

logprobs = roberta.predict('mnli', batch)
print(logprobs.argmax(dim=1))
# tensor([0, 2, 1, 0])
```

##### Using the GPU:
```python
roberta.cuda()
roberta.predict('new_task', tokens)  # tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=<LogSoftmaxBackward>)
```

## Advanced usage

#### Filling masks:

RoBERTa can be used to fill `<mask>` tokens in the input. Some examples from the
[Natural Questions dataset](https://ai.google.com/research/NaturalQuestions/):
```python
roberta.fill_mask('The first Star wars movie came out in <mask>', topk=3)
# [('The first Star wars movie came out in 1977', 0.9504708051681519, ' 1977'), ('The first Star wars movie came out in 1978', 0.009986862540245056, ' 1978'), ('The first Star wars movie came out in 1979', 0.009574787691235542, ' 1979')]

roberta.fill_mask('Vikram samvat calender is official in <mask>', topk=3)
# [('Vikram samvat calender is official in India', 0.21878819167613983, ' India'), ('Vikram samvat calender is official in Delhi', 0.08547237515449524, ' Delhi'), ('Vikram samvat calender is official in Gujarat', 0.07556215673685074, ' Gujarat')]

roberta.fill_mask('<mask> is the common currency of the European Union', topk=3)
# [('Euro is the common currency of the European Union', 0.9456493854522705, 'Euro'), ('euro is the common currency of the European Union', 0.025748178362846375, 'euro'), ('€ is the common currency of the European Union', 0.011183084920048714, '€')]
```

#### Pronoun disambiguation (Winograd Schema Challenge):

RoBERTa can be used to disambiguate pronouns. First install spaCy and download the English-language model:
```bash
pip install spacy
python -m spacy download en_core_web_lg
```

Next load the `roberta.large.wsc` model and call the `disambiguate_pronoun`
function. The pronoun should be surrounded by square brackets (`[]`) and the
query referent surrounded by underscores (`_`), or left blank to return the
predicted candidate text directly:
```python
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.wsc', user_dir='examples/roberta/wsc')
roberta.cuda()  # use the GPU (optional)

roberta.disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.')
# True
roberta.disambiguate_pronoun('The trophy would not fit in the brown _suitcase_ because [it] was too big.')
# False

roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] feared violence.')
# 'The city councilmen'
roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] advocated violence.')
# 'demonstrators'
```

See the [RoBERTA Winograd Schema Challenge (WSC) README](wsc/README.md) for more details on how to train this model.

#### Extract features aligned to words:

By default RoBERTa outputs one feature vector per BPE token. You can instead
realign the features to match [spaCy's word-level tokenization](https://spacy.io/usage/linguistic-features#tokenization)
with the `extract_features_aligned_to_words` method. This will compute a
weighted average of the BPE-level features for each word and expose them in
spaCy's `Token.vector` attribute:
```python
doc = roberta.extract_features_aligned_to_words('I said, "hello RoBERTa."')
assert len(doc) == 10
for tok in doc:
    print('{:10}{} (...)'.format(str(tok), tok.vector[:5]))
# <s>       tensor([-0.1316, -0.0386, -0.0832, -0.0477,  0.1943], grad_fn=<SliceBackward>) (...)
# I         tensor([ 0.0559,  0.1541, -0.4832,  0.0880,  0.0120], grad_fn=<SliceBackward>) (...)
# said      tensor([-0.1565, -0.0069, -0.8915,  0.0501, -0.0647], grad_fn=<SliceBackward>) (...)
# ,         tensor([-0.1318, -0.0387, -0.0834, -0.0477,  0.1944], grad_fn=<SliceBackward>) (...)
# "         tensor([-0.0486,  0.1818, -0.3946, -0.0553,  0.0981], grad_fn=<SliceBackward>) (...)
# hello     tensor([ 0.0079,  0.1799, -0.6204, -0.0777, -0.0923], grad_fn=<SliceBackward>) (...)
# RoBERTa   tensor([-0.2339, -0.1184, -0.7343, -0.0492,  0.5829], grad_fn=<SliceBackward>) (...)
# .         tensor([-0.1341, -0.1203, -0.1012, -0.0621,  0.1892], grad_fn=<SliceBackward>) (...)
# "         tensor([-0.1341, -0.1203, -0.1012, -0.0621,  0.1892], grad_fn=<SliceBackward>) (...)
# </s>      tensor([-0.0930, -0.0392, -0.0821,  0.0158,  0.0649], grad_fn=<SliceBackward>) (...)
```

#### Evaluating the `roberta.large.mnli` model:

Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set.
```python
label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
ncorrect, nsamples = 0, 0
roberta.cuda()
roberta.eval()
with open('glue_data/MNLI/dev_matched.tsv') as fin:
    fin.readline()
    for index, line in enumerate(fin):
        tokens = line.strip().split('\t')
        sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
        tokens = roberta.encode(sent1, sent2)
        prediction = roberta.predict('mnli', tokens).argmax().item()
        prediction_label = label_map[prediction]
        ncorrect += int(prediction_label == target)
        nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))
# Expected output: 0.9060
```

## Finetuning

- [Finetuning on GLUE](README.glue.md)
- [Finetuning on custom classification tasks (e.g., IMDB)](README.custom_classification.md)
- [Finetuning on Winograd Schema Challenge (WSC)](wsc/README.md)
- [Finetuning on Commonsense QA (CQA)](commonsense_qa/README.md)

## Pretraining using your own data

See the [tutorial for pretraining RoBERTa using your own data](README.pretraining.md).

## Citation

```bibtex
@article{liu2019roberta,
    title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
    author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
              Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
              Luke Zettlemoyer and Veselin Stoyanov},
    journal={arXiv preprint arXiv:1907.11692},
    year = {2019},
}
```