File size: 11,961 Bytes
ab95a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Evaluate the perplexity of a trained language model.
"""

import logging
import math
import os
import sys
from argparse import Namespace
from typing import Iterable, List, Optional

import torch
import fairseq
from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter
from fairseq.sequence_scorer import SequenceScorer
from omegaconf import DictConfig


logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.eval_lm")


def eval_lm(
    models: List[fairseq.models.FairseqModel],
    source_dictionary: fairseq.data.Dictionary,
    batch_iterator: Iterable,
    post_process: Optional[str] = None,
    output_word_probs: bool = False,
    output_word_stats: bool = False,
    target_dictionary: Optional[fairseq.data.Dictionary] = None,
    softmax_batch: int = 0,
    remove_bos_token: bool = False,
    device: Optional[torch.device] = None,
):
    """
    Args:
        models (List[~fairseq.models.FairseqModel]): list of models to
            evaluate. Models are essentially `nn.Module` instances, but
            must be compatible with fairseq's `SequenceScorer`.
        source_dictionary (~fairseq.data.Dictionary): dictionary for
            applying any relevant post processing or outputing word
            probs/stats.
        batch_iterator (Iterable): yield batches of data
        post_process (Optional[str]): post-process text by removing BPE,
            letter segmentation, etc. Valid options can be found in
            fairseq.data.utils.post_process, although not all options
            are implemented here.
        output_word_probs (Optional[bool]): output words and their
            predicted log probabilities
        output_word_stats (Optional[bool]): output word statistics such
            as word count and average probability
        target_dictionary (Optional[~fairseq.data.Dictionary]): output
            dictionary (defaults to *source_dictionary*)
        softmax_batch (Optional[bool]): if BxT is more than this, will
            batch the softmax over vocab to this amount of tokens, in
            order to fit into GPU memory
        remove_bos_token (Optional[bool]): if True, confirm that the
            first token is the beginning-of-sentence symbol (according
            to the relevant dictionary) and remove it from the output
        device (Optional[torch.device]): device to use for evaluation
            (defaults to device of first model parameter)
    """
    if target_dictionary is None:
        target_dictionary = source_dictionary
    if device is None:
        device = next(models[0].parameters()).device

    gen_timer = StopwatchMeter()
    scorer = SequenceScorer(target_dictionary, softmax_batch)

    score_sum = 0.0
    count = 0

    if post_process is not None:
        if post_process in {"subword_nmt", "@@ "}:
            bpe_cont = post_process.rstrip()
            bpe_toks = {
                i
                for i in range(len(source_dictionary))
                if source_dictionary[i].endswith(bpe_cont)
            }
        else:
            raise NotImplementedError(
                "--post-process={post_process} is not implemented"
            )
        bpe_len = len(bpe_cont)
    else:
        bpe_toks = None
        bpe_len = 0

    word_stats = dict()

    for sample in batch_iterator:
        if "net_input" not in sample:
            continue

        sample = utils.move_to_cuda(sample, device=device)

        gen_timer.start()
        hypos = scorer.generate(models, sample)
        gen_timer.stop(sample["ntokens"])

        for i, hypos_i in enumerate(hypos):
            hypo = hypos_i[0]
            sample_id = sample["id"][i]

            tokens = hypo["tokens"]
            tgt_len = tokens.numel()
            pos_scores = hypo["positional_scores"].float()

            if remove_bos_token:
                assert hypo["tokens"][0].item() == target_dictionary.bos()
                tokens = tokens[1:]
                pos_scores = pos_scores[1:]

            skipped_toks = 0
            if bpe_toks is not None:
                for i in range(tgt_len - 1):
                    if tokens[i].item() in bpe_toks:
                        skipped_toks += 1
                        pos_scores[i + 1] += pos_scores[i]
                        pos_scores[i] = 0

            inf_scores = pos_scores.eq(float("inf")) | pos_scores.eq(float("-inf"))
            if inf_scores.any():
                logger.info(
                    "skipping tokens with inf scores:",
                    target_dictionary.string(tokens[inf_scores.nonzero()]),
                )
                pos_scores = pos_scores[(~inf_scores).nonzero()]
            score_sum += pos_scores.sum().cpu()
            count += pos_scores.numel() - skipped_toks

            if output_word_probs or output_word_stats:
                w = ""
                word_prob = []
                is_bpe = False
                for i in range(len(tokens)):
                    w_ind = tokens[i].item()
                    w += source_dictionary[w_ind]
                    if bpe_toks is not None and w_ind in bpe_toks:
                        w = w[:-bpe_len]
                        is_bpe = True
                    else:
                        word_prob.append((w, pos_scores[i].item()))

                        next_prob = None
                        ind = i + 1
                        while ind < len(tokens):
                            if pos_scores[ind].item() != 0:
                                next_prob = pos_scores[ind]
                                break
                            ind += 1

                        word_stats.setdefault(w, WordStat(w, is_bpe)).add(
                            pos_scores[i].item(), next_prob
                        )
                        is_bpe = False
                        w = ""
                if output_word_probs:
                    logger.info(
                        str(int(sample_id))
                        + " "
                        + (
                            "\t".join(
                                "{} [{:2f}]".format(x[0], x[1]) for x in word_prob
                            )
                        )
                    )

    avg_nll_loss = (
        -score_sum / count / math.log(2) if count > 0 else 0
    )  # convert to base 2
    logger.info(
        "Evaluated {:,} tokens in {:.1f}s ({:.2f} tokens/s)".format(
            gen_timer.n, gen_timer.sum, 1.0 / gen_timer.avg if gen_timer.avg > 0 else 0
        )
    )

    if output_word_stats:
        for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True):
            logger.info(ws)

    return {
        "loss": avg_nll_loss,
        "perplexity": 2 ** avg_nll_loss,
    }


class WordStat(object):
    def __init__(self, word, is_bpe):
        self.word = word
        self.is_bpe = is_bpe
        self.log_prob = 0
        self.next_word_prob = 0
        self.count = 0
        self.missing_next_words = 0

    def add(self, log_prob, next_word_prob):
        """increments counters for the sum of log probs of current word and next
        word (given context ending at current word). Since the next word might be at the end of the example,
        or it might be not counted because it is not an ending subword unit,
        also keeps track of how many of those we have seen"""
        if next_word_prob is not None:
            self.next_word_prob += next_word_prob
        else:
            self.missing_next_words += 1
        self.log_prob += log_prob
        self.count += 1

    def __str__(self):
        return "{}\t{}\t{}\t{}\t{}\t{}".format(
            self.word,
            self.count,
            self.log_prob,
            self.is_bpe,
            self.next_word_prob,
            self.count - self.missing_next_words,
        )


def main(cfg: DictConfig, **unused_kwargs):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    utils.import_user_module(cfg.common)

    logger.info(cfg)

    if cfg.eval_lm.context_window > 0:
        # reduce tokens per sample by the required context window size
        cfg.task.tokens_per_sample -= cfg.eval_lm.context_window

    # Initialize the task using the current *cfg*
    task = tasks.setup_task(cfg.task)

    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, model_args, task = checkpoint_utils.load_model_ensemble_and_task(
        [cfg.common_eval.path],
        arg_overrides=eval(cfg.common_eval.model_overrides),
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
        task=task,
    )

    use_fp16 = cfg.common.fp16
    use_cuda = torch.cuda.is_available() and not cfg.common.cpu
    if use_cuda:
        torch.cuda.set_device(cfg.distributed_training.device_id)

    # Optimize ensemble for generation and set the source and dest dicts on the model
    # (required by scorer)
    for model in models:
        if use_fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    assert len(models) > 0

    logger.info(
        "num. model params: {:,}".format(sum(p.numel() for p in models[0].parameters()))
    )

    # Load dataset splits
    task.load_dataset(cfg.dataset.gen_subset)
    dataset = task.dataset(cfg.dataset.gen_subset)
    logger.info(
        "{} {} {:,} examples".format(
            cfg.task.data, cfg.dataset.gen_subset, len(dataset)
        )
    )

    itr = task.eval_lm_dataloader(
        dataset=dataset,
        max_tokens=cfg.dataset.max_tokens or 36000,
        batch_size=cfg.dataset.batch_size,
        max_positions=utils.resolve_max_positions(
            *[model.max_positions() for model in models]
        ),
        num_shards=max(
            cfg.dataset.num_shards,
            cfg.distributed_training.distributed_world_size,
        ),
        shard_id=max(
            cfg.dataset.shard_id,
            cfg.distributed_training.distributed_rank,
        ),
        num_workers=cfg.dataset.num_workers,
        data_buffer_size=cfg.dataset.data_buffer_size,
        context_window=cfg.eval_lm.context_window,
    )

    itr = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_interval=cfg.common.log_interval,
        default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
    )

    results = eval_lm(
        models=models,
        source_dictionary=task.source_dictionary,
        batch_iterator=itr,
        post_process=cfg.common_eval.post_process,
        output_word_probs=cfg.eval_lm.output_word_probs,
        output_word_stats=cfg.eval_lm.output_word_stats,
        target_dictionary=task.target_dictionary,
        softmax_batch=cfg.eval_lm.softmax_batch,
        remove_bos_token=getattr(cfg.task, "add_bos_token", False),
    )

    logger.info(
        "Loss (base 2): {:.4f}, Perplexity: {:.2f}".format(
            results["loss"], results["perplexity"]
        )
    )

    return results


def cli_main():
    parser = options.get_eval_lm_parser()
    args = options.parse_args_and_arch(parser)

    distributed_utils.call_main(convert_namespace_to_omegaconf(args), main)


if __name__ == "__main__":
    cli_main()