Spaces:
Sleeping
Sleeping
File size: 14,391 Bytes
80ace65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import streamlit as st
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
import pandas as pd
from datetime import datetime
from transformers import pipeline
# --- Configuration ---
st.set_page_config(
page_title="AfriLearn AI Tutor",
page_icon="🌍",
layout="wide"
)
# --- Load API Keys from secrets.toml ---
AIML_API_KEY = st.secrets["AIML_API_KEY"]
ELEVENLABS_API_KEY = st.secrets["ELEVENLABS_API_KEY"]
STABILITY_KEY = st.secrets["STABILITY_KEY"]
ADMIN_PASS = st.secrets["ADMIN_PASS"]
# --- Initialize APIs ---
@st.cache_resource
def initialize_apis():
base_url = "https://api.aimlapi.com/v1" # AIML API endpoint
api = OpenAI(api_key=AIML_API_KEY, base_url=base_url)
elevenlabs_client = ElevenLabs(api_key=ELEVENLABS_API_KEY)
stability_client = client.StabilityInference(
key=STABILITY_KEY,
engine="stable-diffusion-xl-1024-v1-0"
)
return api, elevenlabs_client, stability_client
api, elevenlabs_client, stability_client = initialize_apis()
# --- Language Setup ---
LANGUAGES = {
"English": "en",
"French": "fr",
"Swahili": "sw"
}
# --- Initialize Session State ---
if "language" not in st.session_state:
st.session_state.language = "English" # Default language
if "offline_mode" not in st.session_state:
st.session_state.offline_mode = False # Default offline mode
if "messages" not in st.session_state:
st.session_state.messages = []
# --- UI Translations ---
TRANSLATIONS = {
"English": {
"chat_header": "🤖 Chat with the AI Tutor",
"chat_placeholder": "Ask your question...",
"enable_voice": "Enable Voice",
"select_voice": "🎤 Select Voice",
},
"French": {
"chat_header": "🤖 Discutez avec le tuteur IA",
"chat_placeholder": "Posez votre question...",
"enable_voice": "Activer la voix",
"select_voice": "🎤 Sélectionnez une voix",
},
"Swahili": {
"chat_header": "🤖 Zungumza na Mwalimu wa AI",
"chat_placeholder": "Uliza swali lako...",
"enable_voice": "Washa Sauti",
"select_voice": "🎤 Chagua sauti",
}
}
# Get translations for the selected language
translations = TRANSLATIONS.get(st.session_state.language, TRANSLATIONS["English"])
# --- Language Selection ---
LANGUAGE = st.sidebar.selectbox(
"🌍 Choose Language / Choisir la langue / Chagua lugha",
list(LANGUAGES.keys()),
index=list(LANGUAGES.keys()).index(st.session_state.language) # Set default from session state
)
# Update session state when language changes
if LANGUAGE != st.session_state.language:
st.session_state.language = LANGUAGE
st.session_state.messages = [] # Clear chat history to reflect new language
st.rerun() # Rerun the app to apply language changes
# --- Voice Selection ---
VOICE_MAPPING = {
"English": ["George", "Alice"], # Voices for English
"French": ["Georges", "Alice"], # Voices for French
"Swahili": ["George", "Alice"] # Voices for Swahili
}
# Get voices for the selected language
voices = VOICE_MAPPING.get(st.session_state.language, ["Emily"]) # Default to English voices
# Add voice selection dropdown
selected_voice = st.sidebar.selectbox(
translations["select_voice"],
voices
)
# --- System Prompt for AI Tutor ---
SYSTEM_PROMPT = f"""
You are a friendly tutor for African students. Follow these rules:
1. Respond in {st.session_state.language}
2. Use examples from local culture (markets, farming, traditions)
3. Keep answers under 3 sentences
4. For math/science, use simple terms
"""
# --- Main Navigation Tabs ---
tabs = ["Home", "About Me", "Tutoring Request", "Career Guidance"]
selected_tab = st.sidebar.radio("Go to / Aller à / Nenda kwa", tabs)
# --- Offline Mode Setup ---
@st.cache_resource
def load_offline_model():
# Load the castorini/afriberta_base model
return pipeline("text-generation", model="castorini/afriberta_base")
# --- Offline Mode Checkbox ---
st.session_state.offline_mode = st.sidebar.checkbox(
"Enable Offline Mode",
value=st.session_state.offline_mode # Preserve state
)
# --- Footer in Sidebar ---
st.sidebar.markdown("---")
st.sidebar.write("Developed with ❤️ by Motsim")
st.sidebar.write("Powered by **AI for Connectivity Hackathon II**")
# --- Home Tab ---
if selected_tab == "Home":
st.header(translations["chat_header"])
# Initialize chat history
if not st.session_state.messages:
st.session_state.messages = [{
"role": "assistant",
"content": {
"English": "Jambo! I'm your AI tutor. Ask me anything about school subjects!",
"French": "Bonjour! Je suis votre tuteur IA. Posez-moi des questions sur les sujets scolaires!",
"Swahili": "Habari! Mimi ni mwalimu wako wa AI. Niulize chochote kuhusu masomo!"
}.get(st.session_state.language, "Jambo! I'm your AI tutor. Ask me anything about school subjects!")
}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Chat input
if prompt := st.chat_input(translations["chat_placeholder"]):
st.session_state.messages.append({"role": "user", "content": prompt})
# Generate response using AIML API or offline model
if st.session_state.offline_mode:
# Use offline model
try:
offline_model = load_offline_model()
ai_response = offline_model(prompt, max_length=50)[0]['generated_text']
except Exception as e:
ai_response = f"⚠️ Error: {str(e)}"
else:
# Use AIML API
try:
completion = api.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.2", # Use the correct model name
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt},
],
temperature=0.7,
max_tokens=256,
)
ai_response = completion.choices[0].message.content
except Exception as e:
ai_response = f"⚠️ Error: {str(e)}"
st.session_state.messages.append({"role": "assistant", "content": ai_response})
st.rerun()
# --- Text-to-Speech Feature with Language Support ---
if st.checkbox(translations["enable_voice"], key="voice_toggle"):
if st.session_state.messages[-1]["role"] == "assistant":
try:
# Generate audio for the text in the selected language
audio_generator = elevenlabs_client.generate(
text=st.session_state.messages[-1]["content"],
voice=selected_voice, # Use the selected voice
model="eleven_multilingual_v2" # Use the multilingual model
)
# Convert generator to bytes
audio_bytes = b"".join(audio_generator)
# Play audio
st.audio(audio_bytes, format="audio/mp3")
except Exception as e:
st.error(f"⚠️ Error generating audio: {str(e)}")
# --- About Me Tab ---
elif selected_tab == "About Us":
st.header("About Me 👨💻")
st.write("Meet the AfriLearn AI Team We are a diverse team of professionals and students specializing in AI, software engineering, pedagogy, cybersecurity, and machine learning. With expertise spanning data science, low-latency networks, education, and secure systems, we are committed to developing AfriLearn—an AI-powered tutoring platform designed to provide equitable, personalized education across Africa. Our platform integrates multilingual AI chatbots, culturally relevant visual lessons, and mentorship tracking to enhance learning experiences, even in low-connectivity regions. Together, we aim to bridge the digital divide and empower students through innovative, accessible education.")
# --- Tutoring Request Tab ---
elif selected_tab == "Tutoring Request":
st.header("📝 Tutoring Request Form")
st.write("Fill out the form below to request a tutor.")
MENTORSHIP_DB = "mentorship_requests.csv"
def load_requests():
try:
return pd.read_csv(MENTORSHIP_DB)
except FileNotFoundError:
return pd.DataFrame(columns=[
"timestamp", "name", "country", "interests",
"contact", "status", "notes"
])
def save_request(request):
df = load_requests()
new_row = pd.DataFrame([request])
df = pd.concat([df, new_row], ignore_index=True)
df.to_csv(MENTORSHIP_DB, index=False)
with st.form("mentor_form"):
col1, col2 = st.columns(2)
with col1:
name = st.text_input("Full Name*", help="Required field")
country = st.selectbox("Country*", [
"Nigeria", "Kenya", "Ghana",
"South Africa", "Other"
])
with col2:
contact = st.text_input("Email/Phone*",
placeholder="e.g. +2348123456789")
education_level = st.selectbox("Education Level", [
"Primary School", "Secondary School",
"University", "Graduate"
])
interests = st.multiselect("Areas of Need*", [
"Math", "Science", "Coding",
"University Applications", "Career Advice"
])
preferred_comms = st.radio("Preferred Communication", [
"WhatsApp", "SMS", "Email"
], horizontal=True)
if st.form_submit_button("Submit Request"):
if not name or not contact or not interests:
st.error("Please fill required fields (*)")
else:
request = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"name": name,
"country": country,
"contact": contact,
"interests": ", ".join(interests),
"education_level": education_level,
"preferred_comms": preferred_comms,
"status": "Pending",
"notes": ""
}
save_request(request)
st.success("Request submitted! Mentor will contact you within 48hrs.")
# Admin Panel
if st.sidebar.text_input("Admin Password", type="password") == ADMIN_PASS:
st.sidebar.success("Admin Mode")
st.header("🔒 Mentor Request Dashboard")
df = load_requests()
if not df.empty:
# Filtering
status_filter = st.multiselect("Filter Status",
options=df["status"].unique(), default=["Pending"])
filtered_df = df[df["status"].isin(status_filter)]
# Display table
st.dataframe(
filtered_df.sort_values("timestamp", ascending=False),
column_config={
"timestamp": "Date",
"contact": "Contact Info",
"preferred_comms": "Preferred Channel"
},
use_container_width=True
)
# Update status
selected_id = st.number_input("Enter Request ID to Update",
min_value=0, max_value=len(df)-1)
new_status = st.selectbox("New Status",
["Pending", "Contacted", "Resolved"])
new_notes = st.text_area("Add Notes")
if st.button("Update Request"):
df.at[selected_id, "status"] = new_status
df.at[selected_id, "notes"] = new_notes
df.to_csv(MENTORSHIP_DB, index=False)
st.success("Request updated!")
else:
st.info("No mentorship requests yet")
# --- Career Guidance Tab ---
elif selected_tab == "Career Guidance":
st.header("🚀 Career Guidance")
st.write("Explore career options and connect with mentors.")
CAREER_DB = "career_requests.csv"
def load_career_requests():
try:
return pd.read_csv(CAREER_DB)
except FileNotFoundError:
return pd.DataFrame(columns=[
"timestamp", "name", "email", "career_interest"
])
def save_career_request(request):
df = load_career_requests()
new_row = pd.DataFrame([request])
df = pd.concat([df, new_row], ignore_index=True)
df.to_csv(CAREER_DB, index=False)
with st.form("career_form"):
name = st.text_input("Your Name*")
email = st.text_input("Your Email*")
career_interest = st.selectbox("Career Interest", [
"Engineering", "Medicine", "Business", "Technology", "Arts"
])
if st.form_submit_button("Submit"):
if not name or not email:
st.error("Please fill required fields (*)")
else:
request = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"name": name,
"email": email,
"career_interest": career_interest
}
save_career_request(request)
st.success("Thank you! A mentor will contact you soon.")
# Admin Panel
if st.sidebar.text_input("Admin Password", type="password") == ADMIN_PASS:
st.sidebar.success("Admin Mode")
st.header("🔒 Career Guidance Dashboard")
df = load_career_requests()
if not df.empty:
st.dataframe(
df.sort_values("timestamp", ascending=False),
column_config={
"timestamp": "Date",
"email": "Email",
"career_interest": "Career Interest"
},
use_container_width=True
)
else:
st.info("No career guidance requests yet") |