File size: 6,048 Bytes
7dce37f
 
 
 
 
 
 
 
 
 
6d018f9
 
f109d37
6d018f9
 
f109d37
7dce37f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da142f
7dce37f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb3f1f
7dce37f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
import torch
import transformers
from transformers import BitsAndBytesConfig
from llavajp.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llavajp.conversation import conv_templates
from llavajp.model.llava_llama import LlavaLlamaForCausalLM
from llavajp.train.dataset import tokenizer_image_token
import spaces

# import subprocess
# import sys

# def install_package():
#     subprocess.check_call([sys.executable, "-m", "pip", "install", "https://github.com/hibikaze-git/LLaVA-JP@feature/tanuki-moe"])

model_path = "weblab-GENIAC/Tanuki-8B-vision"

# load model
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32

bnb_model_from_pretrained_args = {}
bnb_model_from_pretrained_args.update(dict(
    device_map="auto",
    quantization_config=BitsAndBytesConfig(
        load_in_8bit=True,
        llm_int8_skip_modules=["mm_projector", "vision_tower"],
        llm_int8_threshold=6.0,
        llm_int8_has_fp16_weight=False,
    )
))

model = LlavaLlamaForCausalLM.from_pretrained(
    model_path,
    low_cpu_mem_usage=True,
    use_safetensors=True,
    **bnb_model_from_pretrained_args
)

tokenizer = transformers.AutoTokenizer.from_pretrained(
    model_path,
    model_max_length=8192,
    padding_side="right",
    use_fast=False,
)
model.eval()
conv_mode = "v1"

@spaces.GPU(duration=120)
@torch.inference_mode()
def inference_fn(
    image,
    prompt,
    max_len,
    temperature,
    top_p,
    no_repeat_ngram_size
):
    # prepare inputs
    # image pre-process
    image_size = model.get_model().vision_tower.image_processor.size["height"]
    if model.get_model().vision_tower.scales is not None:
        image_size = model.get_model().vision_tower.image_processor.size[
            "height"
        ] * len(model.get_model().vision_tower.scales)

    if device == "cuda":
        image_tensor = (
            model.get_model()
            .vision_tower.image_processor(
                image,
                return_tensors="pt",
                size={"height": image_size, "width": image_size},
            )["pixel_values"]
            .half()
            .cuda()
            .to(torch_dtype)
        )
    else:
        image_tensor = (
            model.get_model()
            .vision_tower.image_processor(
                image,
                return_tensors="pt",
                size={"height": image_size, "width": image_size},
            )["pixel_values"]
            .to(torch_dtype)
        )

    # create prompt
    inp = DEFAULT_IMAGE_TOKEN + "\n" + prompt
    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(
        prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
    ).unsqueeze(0)
    if device == "cuda":
        input_ids = input_ids.to(device)

    input_ids = input_ids[:, :-1]  # </sep>がinputの最後に入るので削除する

    # generate
    output_ids = model.generate(
        inputs=input_ids,
        images=image_tensor,
        do_sample=temperature != 0.0,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_len,
        repetition_penalty=1.0,
        use_cache=False,
        no_repeat_ngram_size=no_repeat_ngram_size
    )

    output_ids = [
        token_id for token_id in output_ids.tolist()[0] if token_id != IMAGE_TOKEN_INDEX
    ]

    print(output_ids)
    output = tokenizer.decode(output_ids, skip_special_tokens=True)

    print(output)

    target = "システム: "
    idx = output.find(target)
    output = output[idx + len(target) :]

    return output

with gr.Blocks() as demo:
    gr.Markdown("# Tanuki-8B-vision Demo")

    with gr.Row():
        with gr.Column():
            # input_instruction = gr.TextArea(label="instruction", value=DEFAULT_INSTRUCTION)
            input_image = gr.Image(type="pil", label="image")
            prompt = gr.Textbox(label="prompt (optional)", value="")
            with gr.Accordion(label="Configs", open=False):
                max_len = gr.Slider(
                    minimum=10,
                    maximum=256,
                    value=200,
                    step=5,
                    interactive=True,
                    label="Max New Tokens",
                )

                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.0,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )

                top_p = gr.Slider(
                    minimum=0.5,
                    maximum=1.0,
                    value=1.0,
                    step=0.1,
                    interactive=True,
                    label="Top p",
                )

                no_repeat_ngram_size = gr.Slider(
                    minimum=0,
                    maximum=4,
                    value=3.0,
                    step=1,
                    interactive=True,
                    label="No Repeat Ngram Size(1, 2にすると出力が狂います)",
                )
            # button
            input_button = gr.Button(value="Submit")
        with gr.Column():
            output = gr.Textbox(label="Output")

    inputs = [input_image, prompt, max_len, temperature, top_p, no_repeat_ngram_size]
    input_button.click(inference_fn, inputs=inputs, outputs=[output])
    prompt.submit(inference_fn, inputs=inputs, outputs=[output])
    img2txt_examples = gr.Examples(
        examples=[
            [
                "https://raw.githubusercontent.com/hibikaze-git/LLaVA-JP/feature/package/imgs/sample1.jpg",
                "猫の隣には何がありますか?",
                128,
                0.0,
                1.0,
                3.0
            ],
        ],
        inputs=inputs,
    )


if __name__ == "__main__":
    demo.queue().launch(server_name="0.0.0.0")