File size: 6,650 Bytes
c625a8c
 
ed1e95d
c625a8c
1dfd50d
654eaa0
30b9c64
a2a0b63
654eaa0
 
f88f764
b94326e
b2c95c6
6a34b4c
97da889
 
 
 
1a4faaf
 
97da889
1a4faaf
 
 
0aeb705
1a4faaf
97da889
e3b5aa2
 
 
 
 
 
 
 
 
 
 
befa051
 
 
 
 
 
 
 
 
 
 
1a4faaf
cb52748
0aeb705
1a4faaf
0aeb705
cb52748
1a4faaf
 
 
a49001a
befa051
 
38986b4
1a4faaf
befa051
97da889
6a34b4c
 
d1f386f
609ebbf
aad9e06
 
 
b9c177c
cefc820
 
 
71778ca
cefc820
 
 
 
 
e3b5aa2
609ebbf
e0024f6
f8392b7
d9ff7d3
609ebbf
5e9f4b2
609ebbf
71778ca
609ebbf
 
3ace823
 
09f4627
654eaa0
 
609ebbf
ef7bf1f
 
682ac66
213eaca
654eaa0
c625a8c
 
 
 
40d7f6a
 
 
1ede826
ef7bf1f
 
 
 
 
 
 
1ede826
1182d2f
c625a8c
051e53e
c625a8c
 
3e76b56
 
 
 
 
 
 
 
f88f764
3e76b56
c625a8c
051e53e
43f6d46
941cbbb
c625a8c
 
609ebbf
a010ff1
3c58d3e
 
ef6577b
c625a8c
0d38122
886ba9c
c625a8c
8766e00
886ba9c
1dfd50d
5b0eb6a
c625a8c
 
 
 
 
 
1322444
051e53e
3523ac0
aad9e06
96cc7ba
aad9e06
1322444
72b576d
de46666
 
 
 
 
 
96cc7ba
 
a389a25
cb2b08b
602e5e4
1322444
c2e7cc6
1322444
1631980
 
1322444
 
 
 
a161c80
c2e7cc6
72b576d
 
602e5e4
1322444
7e33769
1322444
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import fastapi
from fastapi.responses import JSONResponse
from fastapi_users import schemas
from time import time
#from fastapi.middleware.cors import CORSMiddleware
#MODEL_PATH = "./qwen1_5-0_5b-chat-q4_0.gguf" #"./qwen1_5-0_5b-chat-q4_0.gguf"
import logging
from langchain_community.llms import LlamaCpp
import llama_cpp
import llama_cpp.llama_tokenizer
from pydantic import BaseModel
from fastapi import APIRouter
from app.users import current_active_user

from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_chroma import Chroma
from langchain_community.embeddings import GPT4AllEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate

from langchain import hub
from langchain_core.runnables import RunnablePassthrough, RunnablePick

rag_prompt_llama = hub.pull("rlm/rag-prompt-llama")
rag_prompt.messages

llm = llama_cpp.Llama.from_pretrained(
    repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
    filename="*q4_0.gguf",
    tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat"),
    verbose=False,
     n_ctx=512,
     n_gpu_layers=0,
    #chat_format="llama-2"
)


class RagChat:
    def agent(self): 
        loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
        data = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
        all_splits = text_splitter.split_documents(data)
        return all_splits
        
    def download_embedding(self):
        vectorstore = Chroma.from_documents(documents=self.agent, embedding=GPT4AllEmbeddings())
        return vectorstore

    def chat(self, question):
        retriever = vectorstore.as_retriever()
        chain = (
            {"context": retriever | format_docs, "question": RunnablePassthrough()}
            | rag_prompt_llama
            | llm
            | StrOutputParser()
        )
        return chain.invoke({"context": self.search(question), "question": question})
        
    def search(self, question):
        docs = self.download_embedding().similarity_search(question)
        return docs
        

class GenModel(BaseModel):
    question: str
    system: str = "You are a helpful medical AI chat assistant. Help as much as you can.Also continuously ask for possible symptoms in order to atat a conclusive ailment or sickness and possible solutions.Remember, response in English."
    temperature: float = 0.8
    seed: int = 101
    mirostat_mode: int=2
    mirostat_tau: float=4.0
    mirostat_eta: float=1.1

class ChatModel(BaseModel):
    question: list
    system: str = "You are chatDoctor, a helpful health and medical assistant. You are chatting with a human. Help as much as you can. Also continuously ask for possible symptoms in order to a conclusive ailment or sickness and possible solutions.Remember, response in English."
    temperature: float = 0.8
    seed: int = 101
    mirostat_mode: int=2
    mirostat_tau: float=4.0
    mirostat_eta: float=1.1
    
llm_chat = llama_cpp.Llama.from_pretrained(
    repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
    filename="*q4_0.gguf",
    tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat"),
    verbose=False,
     n_ctx=512,
     n_gpu_layers=0,
    #chat_format="llama-2"
)
llm_generate = llama_cpp.Llama.from_pretrained(
    repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
    filename="*q4_0.gguf",
    #tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat"),
    verbose=False,
     n_ctx=4096,
     n_gpu_layers=0,
    mirostat_mode=2,
    mirostat_tau=4.0,
    mirostat_eta=1.1,
    #chat_format="llama-2"
)
# Logger setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

#app = fastapi.FastAPI(
#title="OpenGenAI",
#description="Your Excellect AI Physician")
"""
app.add_middleware(
    CORSMiddleware,
    allow_origins = ["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"]
)
"""
llm_router = APIRouter(prefix="/llm")

@llm_router.get("/health", tags=["llm"])
def health():
    return {"status": "ok"}




@llm_router.post("/rag/", tags=["llm"])
async def ragchat(chatm:ChatModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
    r = RagChat().chat(chatml.question)
    print(r)
    
        
# Chat Completion API
@llm_router.post("/chat/", tags=["llm"])
async def chat(chatm:ChatModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
    #chatm.system = chatm.system.format("")#user.email)
    try:
        st = time()
        output = llm_chat.create_chat_completion(
            messages = chatm.question,
            temperature = chatm.temperature,
            seed = chatm.seed,
            #stream=True
        )
        print(output)
        #print(output)
        et = time()
        output["time"] = et - st
        #messages.append({'role': "assistant", "content": output['choices'][0]['message']['content']})
        #print(messages)
        return output
    except Exception as e:
        logger.error(f"Error in /complete endpoint: {e}")
        return JSONResponse(
            status_code=500, content={"message": "Internal Server Error"}
        )

# Chat Completion API
@llm_router.post("/generate", tags=["llm"])
async def generate(gen:GenModel):#, user: schemas.BaseUser = fastapi.Depends(current_active_user)):
    gen.system = "You are an helpful medical AI assistant."
    gen.temperature = 0.5
    gen.seed = 42
    try:
        #st = time()
        output = llm_generate.create_completion(
            #messages=[
               # {"role": "system", "content": gen.system},
              #  {"role": "user", "content": gen.question},
           # ],
            gen.question,
            temperature = gen.temperature,
            seed= gen.seed,
            #chat_format="llama-2",
            stream=True,
            echo = True
        )
        
        for chunk in output:
            delta = chunk['choices'][0]#['delta']
            print(delta)
            if 'role' in delta:
                print(delta['role'], end=': ')
            elif 'content' in delta:
                print(delta['content'], end='')
            #print(chunk)
        
        #et = time()
        #output["time"] = et - st
        #print(output)
    except Exception as e:
        logger.error(f"Error in /generate endpoint: {e}")
        return JSONResponse(
            status_code=500, content={"message": "Internal Server Error"}
        )