Spaces:
Sleeping
Sleeping
File size: 12,370 Bytes
26f786b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import pandas as pd
import requests
import streamlit as st
from streamlit_lottie import st_lottie
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
# Page Config
st.set_page_config(
page_title="๋
ธ๋ ๊ฐ์ฌ nํ์ Beta",
page_icon="๐",
layout="wide"
)
# st.text(os.listdir(os.curdir))
### Model
tokenizer = AutoTokenizer.from_pretrained("wumusill/final_project_kogpt2")
@st.cache(show_spinner=False)
def load_model():
model = AutoModelForCausalLM.from_pretrained("wumusill/final_project_kogpt2")
return model
model = load_model()
@st.cache(show_spinner=False)
def get_word():
word = pd.read_csv("ballad_word.csv", encoding="cp949")
return word
word = get_word()
one = word[word["0"].str.startswith("ํ")].sample(1).values[0][0]
# st.header(type(one))
# st.header(one)
# Class : Dict ์ค๋ณต ํค ์ถ๋ ฅ
class poem(object):
def __init__(self,letter):
self.letter = letter
def __str__(self):
return self.letter
def __repr__(self):
return "'"+self.letter+"'"
def beta_poem(input_letter):
# ๋์ ๋ฒ์น ์ฌ์
dooeum = {"๋ผ":"๋", "๋ฝ":"๋", "๋":"๋", "๋":"๋ ", "๋":"๋จ", "๋":"๋ฉ", "๋":"๋ญ",
"๋":"๋ด", "๋ญ":"๋", "๋":"์ฝ", "๋ต":"์ฝ", "๋ฅ":"์", "๋":"์", "๋
":"์ฌ",
"๋ ค":"์ฌ", "๋
":"์ญ", "๋ ฅ":"์ญ", "๋
":"์ฐ", "๋ จ":"์ฐ", "๋
":"์ด", "๋ ฌ":"์ด",
"๋
":"์ผ", "๋ ด":"์ผ", "๋ ต":"์ฝ", "๋
":"์", "๋ น":"์", "๋
":"์", "๋ก":"์",
"๋ก":"๋
ธ", "๋ก":"๋
น", "๋ก ":"๋
ผ", "๋กฑ":"๋", "๋ขฐ":"๋", "๋จ":"์", "๋ฃ":"์",
"๋ฃก":"์ฉ", "๋ฃจ":"๋", "๋ด":"์ ", "๋ฅ":"์ ", "๋ต":"์ก", "๋ฅ":"์ก", "๋ฅ":"์ค",
"๋ฅ ":"์จ", "๋ฅญ":"์ต", "๋ฅต":"๋", "๋ฆ":"๋ ", "๋ฆ":"๋ฅ", "๋":"์ด", "๋ฆฌ":"์ด",
"๋ฆฐ":'์ธ', '๋ฆผ':'์', '๋ฆฝ':'์
'}
# ๊ฒฐ๊ณผ๋ฌผ์ ๋ด์ list
res_l = []
len_sequence = 0
# ํ ๊ธ์์ฉ ์ธ๋ฑ์ค์ ํจ๊ป ๊ฐ์ ธ์ด
for idx, val in enumerate(input_letter):
# ๋์ ๋ฒ์น ์ ์ฉ
if val in dooeum.keys():
val = dooeum[val]
# ๋ฐ๋ผ๋์ ์๋ ๋จ์ด ์ ์ฉ
try:
one = word[word["0"].str.startswith(val)].sample(1).values[0][0]
# st.text(one)
except:
one = val
# ์ข๋ ๋งค๋๋ฌ์ด ์ผํ์๋ฅผ ์ํด ์ด์ ๋ฌธ์ฅ์ด๋ ํ์ฌ ์์ ์ฐ๊ฒฐ
# ์ดํ generate ๋ ๋ฌธ์ฅ์์ ์ด์ ๋ฌธ์ฅ์ ๋ํ ๋ฐ์ดํฐ ์ ๊ฑฐ
link_with_pre_sentence = (" ".join(res_l)+ " " + one + " " if idx != 0 else one).strip()
# print(link_with_pre_sentence)
# ์ฐ๊ฒฐ๋ ๋ฌธ์ฅ์ ์ธ์ฝ๋ฉ
input_ids = tokenizer.encode(link_with_pre_sentence, add_special_tokens=False, return_tensors="pt")
# ์ธ์ฝ๋ฉ ๊ฐ์ผ๋ก ๋ฌธ์ฅ ์์ฑ
output_sequence = model.generate(
input_ids=input_ids,
do_sample=True,
max_length=42,
min_length=len_sequence + 2,
temperature=0.9,
repetition_penalty=1.5,
no_repeat_ngram_size=2)
# ์์ฑ๋ ๋ฌธ์ฅ ๋ฆฌ์คํธ๋ก ๋ณํ (์ธ์ฝ๋ฉ ๋์ด์๊ณ , ์์ฑ๋ ๋ฌธ์ฅ ๋ค๋ก padding ์ด ์๋ ์ํ)
generated_sequence = output_sequence.tolist()[0]
# padding index ์๊น์ง slicing ํจ์ผ๋ก์จ padding ์ ๊ฑฐ, padding์ด ์์ ์๋ ์๊ธฐ ๋๋ฌธ์ ์กฐ๊ฑด๋ฌธ ํ์ธ ํ ์ ๊ฑฐ
# ์ฌ์ฉํ generated_sequence ๊ฐ 5๋ณด๋ค ์งง์ผ๋ฉด ๊ฐ์ ์ ์ผ๋ก ๊ธธ์ด๋ฅผ 8๋ก ํด์ค๋ค...
if tokenizer.pad_token_id in generated_sequence:
check_index = generated_sequence.index(tokenizer.pad_token_id)
check_index = check_index if check_index-len_sequence > 3 else len_sequence + 8
generated_sequence = generated_sequence[:check_index]
word_encode = tokenizer.encode(one, add_special_tokens=False, return_tensors="pt").tolist()[0][0]
split_index = len(generated_sequence) - 1 - generated_sequence[::-1].index(word_encode)
# ์ฒซ ๊ธ์๊ฐ ์๋๋ผ๋ฉด, generate ๋ ์์ ๋ง ๊ฒฐ๊ณผ๋ฌผ list์ ๋ค์ด๊ฐ ์ ์๊ฒ ์ ๋ฌธ์ฅ์ ๋ํ ์ธ์ฝ๋ฉ ๊ฐ ์ ๊ฑฐ
generated_sequence = generated_sequence[split_index:]
# print(tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True))
# ๋ค์ ์์ ์ ์ํด ๊ธธ์ด ๊ฐฑ์
len_sequence += len([elem for elem in generated_sequence if elem not in(tokenizer.all_special_ids)])
# ๊ฒฐ๊ณผ๋ฌผ ๋์ฝ๋ฉ
decoded_sequence = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True)
# ๊ฒฐ๊ณผ๋ฌผ ๋ฆฌ์คํธ์ ๋ด๊ธฐ
res_l.append(decoded_sequence)
poem_dict = {"Type":"beta"}
for letter, res in zip(input_letter, res_l):
# decode_res = tokenizer.decode(res, clean_up_tokenization_spaces=True, skip_special_tokens=True)
poem_dict[poem(letter)] = res
return poem_dict
def alpha_poem(input_letter):
# ๋์ ๋ฒ์น ์ฌ์
dooeum = {"๋ผ":"๋", "๋ฝ":"๋", "๋":"๋", "๋":"๋ ", "๋":"๋จ", "๋":"๋ฉ", "๋":"๋ญ",
"๋":"๋ด", "๋ญ":"๋", "๋":"์ฝ", "๋ต":"์ฝ", "๋ฅ":"์", "๋":"์", "๋
":"์ฌ",
"๋ ค":"์ฌ", "๋
":"์ญ", "๋ ฅ":"์ญ", "๋
":"์ฐ", "๋ จ":"์ฐ", "๋
":"์ด", "๋ ฌ":"์ด",
"๋
":"์ผ", "๋ ด":"์ผ", "๋ ต":"์ฝ", "๋
":"์", "๋ น":"์", "๋
":"์", "๋ก":"์",
"๋ก":"๋
ธ", "๋ก":"๋
น", "๋ก ":"๋
ผ", "๋กฑ":"๋", "๋ขฐ":"๋", "๋จ":"์", "๋ฃ":"์",
"๋ฃก":"์ฉ", "๋ฃจ":"๋", "๋ด":"์ ", "๋ฅ":"์ ", "๋ต":"์ก", "๋ฅ":"์ก", "๋ฅ":"์ค",
"๋ฅ ":"์จ", "๋ฅญ":"์ต", "๋ฅต":"๋", "๋ฆ":"๋ ", "๋ฆ":"๋ฅ", "๋":"์ด", "๋ฆฌ":"์ด",
"๋ฆฐ":'์ธ', '๋ฆผ':'์', '๋ฆฝ':'์
'}
# ๊ฒฐ๊ณผ๋ฌผ์ ๋ด์ list
res_l = []
# ํ ๊ธ์์ฉ ์ธ๋ฑ์ค์ ํจ๊ป ๊ฐ์ ธ์ด
for idx, val in enumerate(input_letter):
# ๋์ ๋ฒ์น ์ ์ฉ
if val in dooeum.keys():
val = dooeum[val]
while True:
# ๋ง์ฝ idx ๊ฐ 0 ์ด๋ผ๋ฉด == ์ฒซ ๊ธ์
if idx == 0:
# ์ฒซ ๊ธ์ ์ธ์ฝ๋ฉ
input_ids = tokenizer.encode(
val, add_special_tokens=False, return_tensors="pt")
# print(f"{idx}๋ฒ ์ธ์ฝ๋ฉ : {input_ids}\n") # 2์ฐจ์ ํ
์
# ์ฒซ ๊ธ์ ์ธ์ฝ๋ฉ ๊ฐ์ผ๋ก ๋ฌธ์ฅ ์์ฑ
output_sequence = model.generate(
input_ids=input_ids,
do_sample=True,
max_length=42,
min_length=5,
temperature=0.9,
repetition_penalty=1.7,
no_repeat_ngram_size=2)[0]
# print("์ฒซ ๊ธ์ ์ธ์ฝ๋ฉ ํ generate ๊ฒฐ๊ณผ:", output_sequence, "\n") # tensor
# ์ฒซ ๊ธ์๊ฐ ์๋๋ผ๋ฉด
else:
# ํ ์์
input_ids = tokenizer.encode(
val, add_special_tokens=False, return_tensors="pt")
# print(f"{idx}๋ฒ ์งธ ๊ธ์ ์ธ์ฝ๋ฉ : {input_ids} \n")
# ์ข๋ ๋งค๋๋ฌ์ด ์ผํ์๋ฅผ ์ํด ์ด์ ์ธ์ฝ๋ฉ๊ณผ ์ง๊ธ ์ธ์ฝ๋ฉ ์ฐ๊ฒฐ
link_with_pre_sentence = torch.cat((generated_sequence, input_ids[0]), 0)
link_with_pre_sentence = torch.reshape(link_with_pre_sentence, (1, len(link_with_pre_sentence)))
# print(f"์ด์ ํ
์์ ์ฐ๊ฒฐ๋ ํ
์ {link_with_pre_sentence} \n")
# ์ธ์ฝ๋ฉ ๊ฐ์ผ๋ก ๋ฌธ์ฅ ์์ฑ
output_sequence = model.generate(
input_ids=link_with_pre_sentence,
do_sample=True,
max_length=42,
min_length=5,
temperature=0.9,
repetition_penalty=1.7,
no_repeat_ngram_size=2)[0]
# print(f"{idx}๋ฒ ์ธ์ฝ๋ฉ ํ generate : {output_sequence}")
# ์์ฑ๋ ๋ฌธ์ฅ ๋ฆฌ์คํธ๋ก ๋ณํ (์ธ์ฝ๋ฉ ๋์ด์๊ณ , ์์ฑ๋ ๋ฌธ์ฅ ๋ค๋ก padding ์ด ์๋ ์ํ)
generated_sequence = output_sequence.tolist()
# print(f"{idx}๋ฒ ์ธ์ฝ๋ฉ ๋ฆฌ์คํธ : {generated_sequence} \n")
# padding index ์๊น์ง slicing ํจ์ผ๋ก์จ padding ์ ๊ฑฐ, padding์ด ์์ ์๋ ์๊ธฐ ๋๋ฌธ์ ์กฐ๊ฑด๋ฌธ ํ์ธ ํ ์ ๊ฑฐ
if tokenizer.pad_token_id in generated_sequence:
generated_sequence = generated_sequence[:generated_sequence.index(tokenizer.pad_token_id)]
generated_sequence = torch.tensor(generated_sequence)
# print(f"{idx}๋ฒ ์ธ์ฝ๋ฉ ๋ฆฌ์คํธ ํจ๋ฉ ์ ๊ฑฐ ํ ๋ค์ ํ
์ : {generated_sequence} \n")
# ์ฒซ ๊ธ์๊ฐ ์๋๋ผ๋ฉด, generate ๋ ์์ ๋ง ๊ฒฐ๊ณผ๋ฌผ list์ ๋ค์ด๊ฐ ์ ์๊ฒ ์ ๋ฌธ์ฅ์ ๋ํ ์ธ์ฝ๋ฉ ๊ฐ ์ ๊ฑฐ
# print(generated_sequence)
if idx != 0:
# ์ด์ ๋ฌธ์ฅ์ ๊ธธ์ด ์ดํ๋ก ์ฌ๋ผ์ด์ฑํด์ ์ ๋ฌธ์ฅ ์ ๊ฑฐ
generated_sequence = generated_sequence[len_sequence:]
len_sequence = len(generated_sequence)
# print("len_seq", len_sequence)
# ์์ ๊ทธ๋๋ก ๋ฑ์ผ๋ฉด ๋ค์ ํด์, ์๋๋ฉด while๋ฌธ ํ์ถ
if len_sequence > 1:
break
# ๊ฒฐ๊ณผ๋ฌผ ๋ฆฌ์คํธ์ ๋ด๊ธฐ
res_l.append(generated_sequence)
poem_dict = {"Type":"alpha"}
for letter, res in zip(input_letter, res_l):
decode_res = tokenizer.decode(res, clean_up_tokenization_spaces=True, skip_special_tokens=True)
poem_dict[poem(letter)] = decode_res
return poem_dict
# Image(.gif)
@st.cache(show_spinner=False)
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
lottie_url = "https://assets7.lottiefiles.com/private_files/lf30_fjln45y5.json"
lottie_json = load_lottieurl(lottie_url)
st_lottie(lottie_json, speed=1, height=200, key="initial")
# Title
row0_spacer1, row0_1, row0_spacer2, row0_2, row0_spacer3 = st.columns(
(0.01, 2, 0.05, 0.5, 0.01)
)
with row0_1:
st.markdown("# ํ๊ธ ๋
ธ๋ ๊ฐ์ฌ nํ์โ")
st.markdown("### ๐ฆ๋ฉ์์ด์ฌ์์ฒ๋ผ AIS7๐ฆ - ํ์ด๋ ํ๋ก์ ํธ")
with row0_2:
st.write("")
st.write("")
st.write("")
st.subheader("1์กฐ - ํดํ๋ฆฌ")
st.write("์ด์งํ, ์ต์ง์, ๊ถ์ํฌ, ๋ฌธ์ข
ํ, ๊ตฌ์ํ, ๊น์์ค")
st.write('---')
# Explanation
row1_spacer1, row1_1, row1_spacer2 = st.columns((0.01, 0.01, 0.01))
with row1_1:
st.markdown("### nํ์ ๊ฐ์ด๋๋ผ์ธ")
st.markdown("1. ํ๋จ์ ์๋ ํ
์คํธ๋ฐ์ 5์ ์ดํ ๋จ์ด๋ฅผ ๋ฃ์ด์ฃผ์ธ์")
st.markdown("2. 'nํ์ ์ ์ํ๊ธฐ' ๋ฒํผ์ ํด๋ฆญํด์ฃผ์ธ์")
st.markdown("* nํ์ ํ์
์ค์ \n"
" * Alpha ver. : ๋ชจ๋ธ์ด ์ฒซ ์์ ๋ถํฐ ์์ฑ\n"
" * Beta ver. : ์ฒซ ์์ ์ ๋ฐ์ดํฐ์
์์ ์ฐพ๊ณ , ๋ค์ ๋ถ๋ถ์ ์์ฑ")
st.write('---')
# Model & Input
row2_spacer1, row2_1, row2_spacer2= st.columns((0.01, 0.01, 0.01))
col1, col2 = st.columns(2)
# Word Input
with row2_1:
with col1:
genre = st.radio(
"nํ์ ํ์
์ ํ",
('Alpha', 'Beta(test์ค)'))
if genre == 'Alpha':
n_line_poem = alpha_poem
else:
n_line_poem = beta_poem
with col2:
word_input = st.text_input(
"nํ์์ ์ฌ์ฉํ ๋จ์ด๋ฅผ ์ ๊ณ ๋ฒํผ์ ๋๋ฌ์ฃผ์ธ์.(์ต๋ 5์) ๐",
placeholder='ํ๊ธ ๋จ์ด๋ฅผ ์
๋ ฅํด์ฃผ์ธ์',
max_chars=5
)
word_input = re.sub("[^๊ฐ-ํฃ]", "", word_input)
if st.button('nํ์ ์ ์ํ๊ธฐ'):
if word_input == "":
st.error("์จ์ ํ ํ๊ธ ๋จ์ด๋ฅผ ์ฌ์ฉํด์ฃผ์ธ์!")
else:
st.write("nํ์ ๋จ์ด : ", word_input)
with st.spinner('์ ์ ๊ธฐ๋ค๋ ค์ฃผ์ธ์...'):
result = n_line_poem(word_input)
st.success('์๋ฃ๋์ต๋๋ค!')
for r in result:
st.write(f'{r} : {result[r]}')
|