File size: 1,021 Bytes
b7776da
 
 
dad2fcf
 
 
c2819de
b7776da
 
 
 
 
 
 
0f0afd9
 
b7776da
 
 
 
 
0f0afd9
b7776da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from fastai.vision.all import *
import skimage
import pathlib
plt = platform.system()
if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath
learn = load_learner('modeldatesF.pkl')

labels = learn.dls.vocab
def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
title = "dates Classifier"
description = "A dates classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['siamese.jpg']
interpretation='default'
enable_queue=True

gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=10),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()