Spaces:
Sleeping
Sleeping
File size: 4,254 Bytes
d3830cc e24f20d e86bb0e d3830cc 50d79ba d3830cc e86bb0e 1154c5d 98087f5 850d1e7 faf7c96 d3830cc 49b7222 d3830cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
"""
python interactive.py
"""
import torch
from transformers import AutoTokenizer, BertForSequenceClassification
from transformers import TextClassificationPipeline
import gradio as gr
model_name = 'momo/KcBERT-base_Hate_speech_Privacy_Detection'
model_name_list = [
'momo/KcELECTRA-base_Hate_speech_Privacy_Detection',
"momo/KcBERT-base_Hate_speech_Privacy_Detection",
]
model = BertForSequenceClassification.from_pretrained(
model_name,
num_labels= 15,
problem_type="multi_label_classification"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
unsmile_labels = ["์ฌ์ฑ/๊ฐ์กฑ","๋จ์ฑ","์ฑ์์์","์ธ์ข
/๊ตญ์ ","์ฐ๋ น","์ง์ญ","์ข
๊ต","๊ธฐํ ํ์ค","์
ํ/์์ค","clean", 'name', 'number', 'address', 'bank', 'person']
num_labels = len(unsmile_labels)
model.config.id2label = {i: label for i, label in zip(range(num_labels), unsmile_labels)}
model.config.label2id = {label: i for i, label in zip(range(num_labels), unsmile_labels)}
pipe = TextClassificationPipeline(
model = model,
tokenizer = tokenizer,
device=0,
return_all_scores=True,
function_to_apply='sigmoid'
)
def dectection(input):
for result in pipe(input)[0]:
return result
#Create a gradio app with a button that calls predict()
app = gr.Interface(
fn=dectection,
inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label'],
title="ํ๊ตญ์ด ํ์คํํ, ๊ฐ์ธ์ ๋ณด ํ๋ณ๊ธฐ (Korean Hate Speech and Privacy Detection)",
description="Korean Hate Speech and Privacy Detection."
)
app.launch(share=True)
# # global var
# MODEL_NAME = 'jason9693/SoongsilBERT-base-beep'
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# config = AutoConfig.from_pretrained(MODEL_NAME)
# MODEL_BUF = {
# "name": MODEL_NAME,
# "tokenizer": tokenizer,
# "model": model,
# "config": config
# }
# def change_model_name(name):
# MODEL_BUF["name"] = name
# MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
# MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
# MODEL_BUF["config"] = AutoConfig.from_pretrained(name)
# def predict(model_name, text):
# if model_name != MODEL_BUF["name"]:
# change_model_name(model_name)
# tokenizer = MODEL_BUF["tokenizer"]
# model = MODEL_BUF["model"]
# config = MODEL_BUF["config"]
# tokenized_text = tokenizer([text], return_tensors='pt')
# input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0])
# try:
# input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens
# except KeyError:
# input_tokens = input_tokens
# model.eval()
# output, attention = model(**tokenized_text, output_attentions=True, return_dict=False)
# output = F.softmax(output, dim=-1)
# result = {}
# for idx, label in enumerate(output[0].detach().numpy()):
# result[config.id2label[idx]] = float(label)
# fig = visualize_attention(input_tokens, attention[0][0].detach().numpy())
# return result, fig#.logits.detach()#.numpy()#, output.attentions.detach().numpy()
# if __name__ == '__main__':
# text = '์ฟ๋ด๊ฑธ ํ๋ณฟ๊ธ ์ฟ๋๊ณญ ์์ ฉ๋๊ณ ์์์๋ฉ'
# model_name_list = [
# 'jason9693/SoongsilBERT-base-beep',
# "beomi/beep-klue-roberta-base-hate",
# "beomi/beep-koelectra-base-v3-discriminator-hate",
# "beomi/beep-KcELECTRA-base-hate"
# ]
# #Create a gradio app with a button that calls predict()
# app = gr.Interface(
# fn=predict,
# inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'],
# examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐ฆ 4โ ๐ฆ"]],
# title="ํ๊ตญ์ด ํ์ค์ฑ ๋ฐํ ๋ถ๋ฅ๊ธฐ (Korean Hate Speech Classifier)",
# description="Korean Hate Speech Classifier with Several Pretrained LM\nCurrent Supported Model:\n1. SoongsilBERT\n2. KcBERT(+KLUE)\n3. KcELECTRA\n4.KoELECTRA."
# )
# app.launch(inline=False) |