Spaces:
Running
Running
File size: 15,621 Bytes
be87b4b f937fdb be87b4b 2c4b592 5ff752e 6541332 03585c3 f937fdb 4db655a 2c4b592 6541332 f937fdb be87b4b f937fdb 6541332 03585c3 6541332 6a5a953 6541332 f937fdb d5305d6 6541332 186086a 4db655a 2c4b592 4db655a 2c4b592 186086a 6541332 40999ab 6541332 186086a f937fdb be87b4b 5ff752e 6541332 be87b4b f937fdb be87b4b f937fdb 2c4b592 4db655a 5ff752e 2c4b592 f937fdb 5ff752e be87b4b f937fdb be87b4b 2c4b592 be87b4b 2c4b592 be87b4b 6541332 f937fdb 6541332 f937fdb 2c4b592 be87b4b f937fdb be87b4b 5ff752e f937fdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import traceback
import streamlit as st
import json
import logging
import os
import time
import sys
import requests
import asyncio
import subprocess
import playwright.sync_api as sync_api
# Import our custom classes
from secure_scraper import SecureScraper
from llm_processor import LLMProcessor
# Try to import crawl4ai for debug information
try:
import crawl4ai
CRAWL4AI_IMPORTED = True
except ImportError:
CRAWL4AI_IMPORTED = False
# Try to import playwright for browser check
try:
import playwright
PLAYWRIGHT_IMPORTED = True
except ImportError:
PLAYWRIGHT_IMPORTED = False
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler("scraper_debug.log")
]
)
def check_playwright_browsers():
"""Check if Playwright browsers are installed and provide instructions if not."""
if not PLAYWRIGHT_IMPORTED:
return False, "Playwright is not installed. Install with: pip install playwright"
try:
# Try to run playwright installation check command
result = subprocess.run(
["python", "-m", "playwright", "install", "--help"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
timeout=5
)
# Check if chromium browser exists at common locations
chromium_path = sync_api.chromium.executable_path
firefox_path = sync_api.firefox.executable_path
webkit_path = sync_api.webkit.executable_path
browser_exists = any(os.path.exists(path) for path in [chromium_path, firefox_path, webkit_path])
if not browser_exists:
return False, "Playwright browsers are not installed. Run: playwright install"
return True, "Playwright browsers appear to be installed"
except Exception as e:
return False, f"Error checking Playwright: {str(e)}"
def main():
st.set_page_config(
page_title="LLM Web Scraper",
page_icon="๐ธ๏ธ",
layout="wide",
)
st.title("๐ธ๏ธ LLM Web Scraper")
st.write("Scrape web content with privacy protection and open-source LLM processing - by Mokshith salian")
# Check for Playwright browsers
browsers_ok, browsers_message = check_playwright_browsers()
if not browsers_ok:
st.warning(f"โ ๏ธ {browsers_message}")
st.info("To install the required browsers, run this command in your terminal:")
st.code("playwright install")
# Optional: add a button to try installing
if st.button("Try automatic installation"):
try:
with st.spinner("Installing Playwright browsers..."):
result = subprocess.run(
["python", "-m", "playwright", "install"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
timeout=120
)
if result.returncode == 0:
st.success("Installation successful! Please refresh the page.")
else:
st.error(f"Installation failed: {result.stderr}")
st.code(result.stdout)
except Exception as e:
st.error(f"Error during installation: {str(e)}")
st.info("Please run the command manually in your terminal.")
# Debug expander at the top
with st.expander("Debug Information", expanded=False):
st.write("Python version:", sys.version)
try:
import requests
st.write("Requests version:", requests.__version__)
except ImportError:
st.error("Requests not installed!")
# crawl4ai debug information
if CRAWL4AI_IMPORTED:
try:
st.write("crawl4ai version:", getattr(crawl4ai, "__version__", "Unknown"))
st.write("crawl4ai available methods:", [method for method in dir(crawl4ai) if not method.startswith("_")])
except:
st.write("crawl4ai is installed but version information is not available")
else:
st.error("crawl4ai not installed!")
# Playwright debug information
try:
import playwright
# Playwright package doesn't have __version__ directly accessible
try:
# Try to get version from package metadata if available
from importlib.metadata import version
playwright_version = version("playwright")
except:
# Fallback to getting version via pip subprocess
try:
result = subprocess.run(
[sys.executable, "-m", "pip", "show", "playwright"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
timeout=5
)
for line in result.stdout.split("\n"):
if line.startswith("Version:"):
playwright_version = line.split("Version:")[1].strip()
break
else:
playwright_version = "Unknown"
except:
playwright_version = "Unknown"
st.write("Playwright version:", playwright_version)
# Check if browsers are installed
browsers_ok, browsers_message = check_playwright_browsers()
st.write(f"Playwright browsers: {browsers_message}")
except ImportError:
st.error("Playwright not installed!")
try:
import transformers
st.write("Transformers version:", transformers.__version__)
except ImportError:
st.error("Transformers not installed!")
try:
import torch
st.write("PyTorch version:", torch.__version__)
st.write("CUDA available:", torch.cuda.is_available())
if torch.cuda.is_available():
st.write("CUDA device:", torch.cuda.get_device_name(0))
except ImportError:
st.error("PyTorch not installed!")
# Configuration section
with st.sidebar:
st.header("Configuration")
st.subheader("LLM Model Selection")
model_option = st.selectbox(
"Choose LLM Model",
[
"microsoft/phi-2 (fastest, 2.7B)",
"google/gemma-2b (balanced)",
"mistralai/Mistral-7B-Instruct-v0.2 (best quality, slowest)"
],
index=0
)
# Convert selection to model name
model_name = model_option.split(" ")[0]
st.subheader("Privacy Settings")
use_proxy = st.checkbox("Use Proxy Rotation", value=False)
use_user_agent = st.checkbox("Use User-Agent Rotation", value=True)
# Add AsyncWebCrawler specific settings
st.subheader("Crawler Settings")
max_connections = st.slider("Max Connections", min_value=1, max_value=20, value=10)
timeout_seconds = st.slider("Request Timeout (seconds)", min_value=5, max_value=60, value=30)
max_retries = st.slider("Max Retries", min_value=1, max_value=10, value=5)
test_mode = st.sidebar.checkbox("Enable Test Mode", value=False)
# If in test mode, show a simplified test interface
if test_mode:
st.header("๐ Test Mode")
st.info("This mode lets you test basic web connectivity without the full pipeline")
test_url = st.text_input("Test URL", "https://www.example.com")
if st.button("Test Connection"):
try:
with st.spinner("Testing connection..."):
# First try with requests for basic connectivity
basic_response = requests.get(test_url, timeout=10)
st.success(f"Basic HTTP connection successful: Status {basic_response.status_code}")
# Then try with our crawler
st.info("Now testing with crawl4ai integration...")
# Configure proxy list based on user selection
proxy_list = None
if use_proxy:
# Example proxy list - in production you'd load from a secured source
proxy_list = [
"http://example-proxy1.com:8080",
"http://example-proxy2.com:8080"
]
# Initialize the scraper with the configured settings
test_scraper = SecureScraper(proxy_list=proxy_list)
test_scraper.crawler.max_connections = max_connections
test_scraper.crawler.timeout = timeout_seconds
result = test_scraper.scrape_url(test_url)
if result['status'] == 'success':
st.success(f"crawl4ai connection successful")
st.write("Privacy settings used:")
st.json(result['privacy'])
with st.expander("Response Preview"):
st.write(result['data']['title'])
st.write(result['data']['text'][:1000] + "..." if len(result['data']['text']) > 1000 else result['data']['text'])
else:
st.error(f"crawl4ai connection failed: {result['message']}")
except Exception as e:
st.error(f"Connection failed: {str(e)}")
st.code(traceback.format_exc())
# Input section
st.header("Scraping Target")
url = st.text_input("Enter the URL to scrape", placeholder="https://example.com/")
with st.expander("Advanced Scraping Options"):
css_selectors_text = st.text_area(
"CSS Selectors (JSON format)",
placeholder='{"title": "h1", "price": ".product-price", "description": ".product-description"}'
)
# Parse CSS selectors
css_selectors = None
if css_selectors_text:
try:
css_selectors = json.loads(css_selectors_text)
except json.JSONDecodeError:
st.error("Invalid JSON for CSS selectors")
st.header("LLM Processing")
llm_instruction = st.text_area(
"What do you want the LLM to do with the scraped data?",
placeholder="Extract the main product features and summarize them in bullet points"
)
# Initialize on button click
if st.button("Scrape and Process"):
if not url:
st.error("Please enter a URL to scrape")
return
# Show progress
with st.spinner("Initializing scraper..."):
# Configure proxy list based on user selection
proxy_list = None
if use_proxy:
st.warning("Using proxy rotation - in a production system, you'd want to use paid proxies")
# Example proxy list - in production you'd load from a secured source
proxy_list = [
"http://example-proxy1.com:8080",
"http://example-proxy2.com:8080"
]
# Initialize the scraper with updated parameters
scraper = SecureScraper(proxy_list=proxy_list)
# Update AsyncWebCrawler settings based on user input
scraper.crawler.max_connections = max_connections
scraper.crawler.timeout = timeout_seconds
scraper.crawler.random_user_agent = use_user_agent
error_placeholder = st.empty()
# Perform scraping
with st.spinner("Scraping website"):
# First, test basic connectivity with a direct request
st.info(f"Testing basic connectivity to {url}")
try:
test_response = requests.get(url, timeout=10)
st.success(f"Basic connection successful: HTTP {test_response.status_code}")
except Exception as e:
st.warning(f"Basic connection test failed: {str(e)}. Trying with crawl4ai anyway...")
# Check if Playwright browsers are installed before scraping
browsers_ok, _ = check_playwright_browsers()
if not browsers_ok:
st.error("Cannot scrape: Playwright browsers are not installed. Please install them first.")
return
try:
# Now perform the actual scraping with our scraper
result = scraper.scrape_url(url, css_selectors)
if result['status'] == 'error':
st.error(f"Scraping failed: {result['message']}")
return
except Exception as e:
if "Executable doesn't exist" in str(e):
st.error("Error: Playwright browser not found. Please install using the button at the top of the page.")
return
else:
st.error(f"Scraping error: {str(e)}")
st.code(traceback.format_exc())
return
st.success("Scraping completed successfully!")
# Display privacy measures used
st.subheader("Privacy Measures Used")
st.json(result['privacy'])
# Display raw scraped data
with st.expander("Raw Scraped Data"):
st.json(result['data'])
# Don't attempt LLM processing if scraping failed
if 'result' not in locals() or result['status'] == 'error':
return
# Process with LLM
with st.spinner(f"Processing with {model_name}..."):
try:
llm = LLMProcessor(model_name=model_name)
# Prepare data for LLM (convert to string if it's a dict)
scraped_data_str = json.dumps(result['data'], indent=2) if isinstance(result['data'], dict) else result['data']
processed_result = llm.process_data(
scraped_data_str,
llm_instruction if llm_instruction else "Summarize this information"
)
st.subheader("LLM Processing Result")
st.write(processed_result)
except Exception as e:
st.error(f"Error in LLM processing: {str(e)}")
st.info("Try using a smaller model like microsoft/phi-2 if you're facing memory issues")
logging.error(f"LLM processing error: {str(e)}")
logging.error(traceback.format_exc())
# Create a utility for running async code in Streamlit
def run_async_code(coro):
"""Run an async coroutine in a Streamlit app."""
try:
loop = asyncio.new_event_loop()
return loop.run_until_complete(coro)
finally:
loop.close()
if __name__ == "__main__":
main() |