Spaces:
Runtime error
Runtime error
File size: 2,560 Bytes
2fa2727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from utils import get_datasets, build_loaders
from models import PoemTextModel
from train import train, test
from metrics import calc_metrics
from inference import predict_poems_from_text
from utils import get_poem_embeddings
import config as CFG
import json
def main():
"""
Creates a PoemTextModel based on configs and trains, tests and outputs some examples of its prediction.
"""
# get dataset from dataset_path (the same datasets as the train, val and test dataset files in the data directory is made)
train_dataset, val_dataset, test_dataset = get_datasets()
train_loader = build_loaders(train_dataset, mode="train")
valid_loader = build_loaders(val_dataset, mode="valid")
# train a PoemTextModel and write its loss history in a file
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
model, loss_history = train(model, train_loader, valid_loader)
with open('loss_history_{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
f.write(json.dumps(loss_history, indent= 4))
# compute accuracy, mean rank and MRR using test set and write them in a file
model.eval()
print("Accuracy on test set: ", test(model, test_dataset))
metrics = calc_metrics(test_dataset, model)
print('mean rank: ', metrics["mean_rank"])
print('mean reciprocal rank (MRR)', metrics["mean_reciprocal_rank_(MRR)"])
with open('test_metrics_{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
f.write(json.dumps(metrics, indent= 4))
# Inference: Output some example predictions and write them in a file
print("_"*20)
print("Output Examples from test set")
model, poem_embeddings = get_poem_embeddings(test_dataset, model)
example = {}
for i, test_data in enumerate(test_dataset[:100]):
example[i] = {'Text': test_data["text"], 'True Beyt': test_data["beyt"], "Predicted Beyt":predict_poems_from_text(model, poem_embeddings, test_data["text"], [data['beyt'] for data in test_dataset], n=10)}
for i in range(10):
print("Text: ", example[i]['Text'])
print("True Beyt: ", example[i]['True Beyt'])
print("predicted Beyts: \n\t", "\n\t".join(example[i]["Predicted Beyt"]))
with open('example_output__{}_{}.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
f.write(json.dumps(example, ensure_ascii=False, indent= 4))
if __name__ == "__main__":
main() |