File size: 7,716 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import annotations
import os
from collections import namedtuple
import enum

import torch.nn as nn
import torch.nn.functional as F

from modules import sd_models, cache, errors, hashes, shared
import modules.models.sd3.mmdit

NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])

metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}


class SdVersion(enum.Enum):
    Unknown = 1
    SD1 = 2
    SD2 = 3
    SDXL = 4


class NetworkOnDisk:
    def __init__(self, name, filename):
        self.name = name
        self.filename = filename
        self.metadata = {}
        self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"

        def read_metadata():
            metadata = sd_models.read_metadata_from_safetensors(filename)

            return metadata

        if self.is_safetensors:
            try:
                self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
            except Exception as e:
                errors.display(e, f"reading lora {filename}")

        if self.metadata:
            m = {}
            for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
                m[k] = v

            self.metadata = m

        self.alias = self.metadata.get('ss_output_name', self.name)

        self.hash = None
        self.shorthash = None
        self.set_hash(
            self.metadata.get('sshs_model_hash') or
            hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
            ''
        )

        self.sd_version = self.detect_version()

    def detect_version(self):
        if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"):
            return SdVersion.SDXL
        elif str(self.metadata.get('ss_v2', "")) == "True":
            return SdVersion.SD2
        elif len(self.metadata):
            return SdVersion.SD1

        return SdVersion.Unknown

    def set_hash(self, v):
        self.hash = v
        self.shorthash = self.hash[0:12]

        if self.shorthash:
            import networks
            networks.available_network_hash_lookup[self.shorthash] = self

    def read_hash(self):
        if not self.hash:
            self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')

    def get_alias(self):
        import networks
        if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases:
            return self.name
        else:
            return self.alias


class Network:  # LoraModule
    def __init__(self, name, network_on_disk: NetworkOnDisk):
        self.name = name
        self.network_on_disk = network_on_disk
        self.te_multiplier = 1.0
        self.unet_multiplier = 1.0
        self.dyn_dim = None
        self.modules = {}
        self.bundle_embeddings = {}
        self.mtime = None

        self.mentioned_name = None
        """the text that was used to add the network to prompt - can be either name or an alias"""


class ModuleType:
    def create_module(self, net: Network, weights: NetworkWeights) -> Network | None:
        return None


class NetworkModule:
    def __init__(self, net: Network, weights: NetworkWeights):
        self.network = net
        self.network_key = weights.network_key
        self.sd_key = weights.sd_key
        self.sd_module = weights.sd_module

        if isinstance(self.sd_module, modules.models.sd3.mmdit.QkvLinear):
            s = self.sd_module.weight.shape
            self.shape = (s[0] // 3, s[1])
        elif hasattr(self.sd_module, 'weight'):
            self.shape = self.sd_module.weight.shape
        elif isinstance(self.sd_module, nn.MultiheadAttention):
            # For now, only self-attn use Pytorch's MHA
            # So assume all qkvo proj have same shape
            self.shape = self.sd_module.out_proj.weight.shape
        else:
            self.shape = None

        self.ops = None
        self.extra_kwargs = {}
        if isinstance(self.sd_module, nn.Conv2d):
            self.ops = F.conv2d
            self.extra_kwargs = {
                'stride': self.sd_module.stride,
                'padding': self.sd_module.padding
            }
        elif isinstance(self.sd_module, nn.Linear):
            self.ops = F.linear
        elif isinstance(self.sd_module, nn.LayerNorm):
            self.ops = F.layer_norm
            self.extra_kwargs = {
                'normalized_shape': self.sd_module.normalized_shape,
                'eps': self.sd_module.eps
            }
        elif isinstance(self.sd_module, nn.GroupNorm):
            self.ops = F.group_norm
            self.extra_kwargs = {
                'num_groups': self.sd_module.num_groups,
                'eps': self.sd_module.eps
            }

        self.dim = None
        self.bias = weights.w.get("bias")
        self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
        self.scale = weights.w["scale"].item() if "scale" in weights.w else None

        self.dora_scale = weights.w.get("dora_scale", None)
        self.dora_norm_dims = len(self.shape) - 1

    def multiplier(self):
        if 'transformer' in self.sd_key[:20]:
            return self.network.te_multiplier
        else:
            return self.network.unet_multiplier

    def calc_scale(self):
        if self.scale is not None:
            return self.scale
        if self.dim is not None and self.alpha is not None:
            return self.alpha / self.dim

        return 1.0

    def apply_weight_decompose(self, updown, orig_weight):
        # Match the device/dtype
        orig_weight = orig_weight.to(updown.dtype)
        dora_scale = self.dora_scale.to(device=orig_weight.device, dtype=updown.dtype)
        updown = updown.to(orig_weight.device)

        merged_scale1 = updown + orig_weight
        merged_scale1_norm = (
            merged_scale1.transpose(0, 1)
            .reshape(merged_scale1.shape[1], -1)
            .norm(dim=1, keepdim=True)
            .reshape(merged_scale1.shape[1], *[1] * self.dora_norm_dims)
            .transpose(0, 1)
        )

        dora_merged = (
            merged_scale1 * (dora_scale / merged_scale1_norm)
        )
        final_updown = dora_merged - orig_weight
        return final_updown

    def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
        if self.bias is not None:
            updown = updown.reshape(self.bias.shape)
            updown += self.bias.to(orig_weight.device, dtype=updown.dtype)
            updown = updown.reshape(output_shape)

        if len(output_shape) == 4:
            updown = updown.reshape(output_shape)

        if orig_weight.size().numel() == updown.size().numel():
            updown = updown.reshape(orig_weight.shape)

        if ex_bias is not None:
            ex_bias = ex_bias * self.multiplier()

        updown = updown * self.calc_scale()

        if self.dora_scale is not None:
            updown = self.apply_weight_decompose(updown, orig_weight)

        return updown * self.multiplier(), ex_bias

    def calc_updown(self, target):
        raise NotImplementedError()

    def forward(self, x, y):
        """A general forward implementation for all modules"""
        if self.ops is None:
            raise NotImplementedError()
        else:
            updown, ex_bias = self.calc_updown(self.sd_module.weight)
            return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs)