Spaces:
Runtime error
Runtime error
File size: 15,114 Bytes
6831a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os
import torch
import gradio as gr
from gradio.context import Context
from modules import shared_items, shared, ui_common, sd_models, processing, infotext_utils, paths
from backend import memory_management, stream
from backend.args import dynamic_args
total_vram = int(memory_management.total_vram)
ui_forge_preset: gr.Radio = None
ui_checkpoint: gr.Dropdown = None
ui_vae: gr.Dropdown = None
ui_clip_skip: gr.Slider = None
ui_forge_unet_storage_dtype_options: gr.Radio = None
ui_forge_async_loading: gr.Radio = None
ui_forge_pin_shared_memory: gr.Radio = None
ui_forge_inference_memory: gr.Slider = None
forge_unet_storage_dtype_options = {
'Automatic': (None, False),
'Automatic (fp16 LoRA)': (None, True),
'bnb-nf4': ('nf4', False),
'bnb-nf4 (fp16 LoRA)': ('nf4', True),
'float8-e4m3fn': (torch.float8_e4m3fn, False),
'float8-e4m3fn (fp16 LoRA)': (torch.float8_e4m3fn, True),
'bnb-fp4': ('fp4', False),
'bnb-fp4 (fp16 LoRA)': ('fp4', True),
'float8-e5m2': (torch.float8_e5m2, False),
'float8-e5m2 (fp16 LoRA)': (torch.float8_e5m2, True),
}
module_list = {}
def bind_to_opts(comp, k, save=False, callback=None):
def on_change(v):
shared.opts.set(k, v)
if save:
shared.opts.save(shared.config_filename)
if callback is not None:
callback()
return
comp.change(on_change, inputs=[comp], queue=False, show_progress=False)
return
def make_checkpoint_manager_ui():
global ui_checkpoint, ui_vae, ui_clip_skip, ui_forge_unet_storage_dtype_options, ui_forge_async_loading, ui_forge_pin_shared_memory, ui_forge_inference_memory, ui_forge_preset
if shared.opts.sd_model_checkpoint in [None, 'None', 'none', '']:
if len(sd_models.checkpoints_list) == 0:
sd_models.list_models()
if len(sd_models.checkpoints_list) > 0:
shared.opts.set('sd_model_checkpoint', next(iter(sd_models.checkpoints_list.values())).name)
ui_forge_preset = gr.Radio(label="UI", value=lambda: shared.opts.forge_preset, choices=['sd', 'xl', 'flux', 'all'])
ckpt_list, vae_list = refresh_models()
ui_checkpoint = gr.Dropdown(
value=lambda: shared.opts.sd_model_checkpoint,
label="Checkpoint",
elem_classes=['model_selection'],
choices=ckpt_list
)
ui_vae = gr.Dropdown(
value=lambda: [os.path.basename(x) for x in shared.opts.forge_additional_modules],
multiselect=True,
label="VAE / Text Encoder",
render=False,
choices=vae_list
)
def gr_refresh_models():
a, b = refresh_models()
return gr.update(choices=a), gr.update(choices=b)
refresh_button = ui_common.ToolButton(value=ui_common.refresh_symbol, elem_id=f"forge_refresh_checkpoint", tooltip="Refresh")
refresh_button.click(
fn=gr_refresh_models,
inputs=[],
outputs=[ui_checkpoint, ui_vae],
show_progress=False,
queue=False
)
Context.root_block.load(
fn=gr_refresh_models,
inputs=[],
outputs=[ui_checkpoint, ui_vae],
show_progress=False,
queue=False
)
ui_vae.render()
ui_forge_unet_storage_dtype_options = gr.Dropdown(label="Diffusion in Low Bits", value=lambda: shared.opts.forge_unet_storage_dtype, choices=list(forge_unet_storage_dtype_options.keys()))
bind_to_opts(ui_forge_unet_storage_dtype_options, 'forge_unet_storage_dtype', save=True, callback=refresh_model_loading_parameters)
ui_forge_async_loading = gr.Radio(label="Swap Method", value=lambda: shared.opts.forge_async_loading, choices=['Queue', 'Async'])
ui_forge_pin_shared_memory = gr.Radio(label="Swap Location", value=lambda: shared.opts.forge_pin_shared_memory, choices=['CPU', 'Shared'])
ui_forge_inference_memory = gr.Slider(label="GPU Weights (MB)", value=lambda: total_vram - shared.opts.forge_inference_memory, minimum=0, maximum=int(memory_management.total_vram), step=1)
mem_comps = [ui_forge_inference_memory, ui_forge_async_loading, ui_forge_pin_shared_memory]
ui_forge_inference_memory.change(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
ui_forge_async_loading.change(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
ui_forge_pin_shared_memory.change(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
Context.root_block.load(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
ui_clip_skip = gr.Slider(label="Clip skip", value=lambda: shared.opts.CLIP_stop_at_last_layers, **{"minimum": 1, "maximum": 12, "step": 1})
bind_to_opts(ui_clip_skip, 'CLIP_stop_at_last_layers', save=False)
ui_checkpoint.change(checkpoint_change, inputs=[ui_checkpoint], show_progress=False)
ui_vae.change(vae_change, inputs=[ui_vae], queue=False, show_progress=False)
return
def find_files_with_extensions(base_path, extensions):
found_files = {}
for root, _, files in os.walk(base_path):
for file in files:
if any(file.endswith(ext) for ext in extensions):
full_path = os.path.join(root, file)
found_files[file] = full_path
return found_files
def refresh_models():
global module_list
shared_items.refresh_checkpoints()
ckpt_list = shared_items.list_checkpoint_tiles(shared.opts.sd_checkpoint_dropdown_use_short)
file_extensions = ['ckpt', 'pt', 'bin', 'safetensors']
module_list.clear()
module_paths = [
os.path.abspath(os.path.join(paths.models_path, "VAE")),
os.path.abspath(os.path.join(paths.models_path, "text_encoder")),
]
if isinstance(shared.cmd_opts.vae_dir, str):
module_paths.append(os.path.abspath(shared.cmd_opts.vae_dir))
for vae_path in module_paths:
vae_files = find_files_with_extensions(vae_path, file_extensions)
module_list.update(vae_files)
return ckpt_list, module_list.keys()
def refresh_memory_management_settings(model_memory, async_loading, pin_shared_memory):
inference_memory = total_vram - model_memory
shared.opts.set('forge_async_loading', async_loading)
shared.opts.set('forge_inference_memory', inference_memory)
shared.opts.set('forge_pin_shared_memory', pin_shared_memory)
stream.stream_activated = async_loading == 'Async'
memory_management.current_inference_memory = inference_memory * 1024 * 1024
memory_management.PIN_SHARED_MEMORY = pin_shared_memory == 'Shared'
log_dict = dict(
stream=stream.should_use_stream(),
inference_memory=memory_management.minimum_inference_memory() / (1024 * 1024),
pin_shared_memory=memory_management.PIN_SHARED_MEMORY
)
print(f'Environment vars changed: {log_dict}')
processing.need_global_unload = True
return
def refresh_model_loading_parameters():
from modules.sd_models import select_checkpoint, model_data
checkpoint_info = select_checkpoint()
unet_storage_dtype, lora_fp16 = forge_unet_storage_dtype_options.get(shared.opts.forge_unet_storage_dtype, (None, False))
dynamic_args['online_lora'] = lora_fp16
model_data.forge_loading_parameters = dict(
checkpoint_info=checkpoint_info,
additional_modules=shared.opts.forge_additional_modules,
unet_storage_dtype=unet_storage_dtype
)
print(f'Model selected: {model_data.forge_loading_parameters}')
print(f'Using online LoRAs in FP16: {lora_fp16}')
processing.need_global_unload = True
return
def checkpoint_change(ckpt_name):
shared.opts.set('sd_model_checkpoint', ckpt_name)
shared.opts.save(shared.config_filename)
refresh_model_loading_parameters()
return
def vae_change(module_names):
modules = []
for n in module_names:
if n in module_list:
modules.append(module_list[n])
shared.opts.set('forge_additional_modules', modules)
shared.opts.save(shared.config_filename)
refresh_model_loading_parameters()
return
def get_a1111_ui_component(tab, label):
fields = infotext_utils.paste_fields[tab]['fields']
for f in fields:
if f.label == label or f.api == label:
return f.component
def forge_main_entry():
ui_txt2img_width = get_a1111_ui_component('txt2img', 'Size-1')
ui_txt2img_height = get_a1111_ui_component('txt2img', 'Size-2')
ui_txt2img_cfg = get_a1111_ui_component('txt2img', 'CFG scale')
ui_txt2img_distilled_cfg = get_a1111_ui_component('txt2img', 'Distilled CFG Scale')
ui_txt2img_sampler = get_a1111_ui_component('txt2img', 'sampler_name')
ui_txt2img_scheduler = get_a1111_ui_component('txt2img', 'scheduler')
ui_img2img_width = get_a1111_ui_component('img2img', 'Size-1')
ui_img2img_height = get_a1111_ui_component('img2img', 'Size-2')
ui_img2img_cfg = get_a1111_ui_component('img2img', 'CFG scale')
ui_img2img_distilled_cfg = get_a1111_ui_component('img2img', 'Distilled CFG Scale')
ui_img2img_sampler = get_a1111_ui_component('img2img', 'sampler_name')
ui_img2img_scheduler = get_a1111_ui_component('img2img', 'scheduler')
output_targets = [
ui_vae,
ui_clip_skip,
ui_forge_unet_storage_dtype_options,
ui_forge_async_loading,
ui_forge_pin_shared_memory,
ui_forge_inference_memory,
ui_txt2img_width,
ui_img2img_width,
ui_txt2img_height,
ui_img2img_height,
ui_txt2img_cfg,
ui_img2img_cfg,
ui_txt2img_distilled_cfg,
ui_img2img_distilled_cfg,
ui_txt2img_sampler,
ui_img2img_sampler,
ui_txt2img_scheduler,
ui_img2img_scheduler
]
ui_forge_preset.change(on_preset_change, inputs=[ui_forge_preset], outputs=output_targets, queue=False, show_progress=False)
Context.root_block.load(on_preset_change, inputs=None, outputs=output_targets, queue=False, show_progress=False)
refresh_model_loading_parameters()
return
def on_preset_change(preset=None):
if preset is not None:
shared.opts.set('forge_preset', preset)
shared.opts.save(shared.config_filename)
if shared.opts.forge_preset == 'sd':
return [
gr.update(visible=True), # ui_vae
gr.update(visible=True, value=1), # ui_clip_skip
gr.update(visible=False, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=False, value='Queue'), # ui_forge_async_loading
gr.update(visible=False, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=False, value=total_vram - 1024), # ui_forge_inference_memory
gr.update(value=512), # ui_txt2img_width
gr.update(value=512), # ui_img2img_width
gr.update(value=640), # ui_txt2img_height
gr.update(value=512), # ui_img2img_height
gr.update(value=7), # ui_txt2img_cfg
gr.update(value=7), # ui_img2img_cfg
gr.update(visible=False, value=3.5), # ui_txt2img_distilled_cfg
gr.update(visible=False, value=3.5), # ui_img2img_distilled_cfg
gr.update(value='Euler a'), # ui_txt2img_sampler
gr.update(value='Euler a'), # ui_img2img_sampler
gr.update(value='Automatic'), # ui_txt2img_scheduler
gr.update(value='Automatic'), # ui_img2img_scheduler
]
if shared.opts.forge_preset == 'xl':
return [
gr.update(visible=True), # ui_vae
gr.update(visible=False, value=1), # ui_clip_skip
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=False, value='Queue'), # ui_forge_async_loading
gr.update(visible=False, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=True, value=total_vram - 1024), # ui_forge_inference_memory
gr.update(value=896), # ui_txt2img_width
gr.update(value=1024), # ui_img2img_width
gr.update(value=1152), # ui_txt2img_height
gr.update(value=1024), # ui_img2img_height
gr.update(value=5), # ui_txt2img_cfg
gr.update(value=5), # ui_img2img_cfg
gr.update(visible=False, value=3.5), # ui_txt2img_distilled_cfg
gr.update(visible=False, value=3.5), # ui_img2img_distilled_cfg
gr.update(value='DPM++ 2M SDE'), # ui_txt2img_sampler
gr.update(value='DPM++ 2M SDE'), # ui_img2img_sampler
gr.update(value='Karras'), # ui_txt2img_scheduler
gr.update(value='Karras'), # ui_img2img_scheduler
]
if shared.opts.forge_preset == 'flux':
return [
gr.update(visible=True), # ui_vae
gr.update(visible=False, value=1), # ui_clip_skip
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=True, value='Queue'), # ui_forge_async_loading
gr.update(visible=True, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=True, value=total_vram - 1024), # ui_forge_inference_memory
gr.update(value=896), # ui_txt2img_width
gr.update(value=1024), # ui_img2img_width
gr.update(value=1152), # ui_txt2img_height
gr.update(value=1024), # ui_img2img_height
gr.update(value=1), # ui_txt2img_cfg
gr.update(value=1), # ui_img2img_cfg
gr.update(visible=True, value=3.5), # ui_txt2img_distilled_cfg
gr.update(visible=True, value=3.5), # ui_img2img_distilled_cfg
gr.update(value='Euler'), # ui_txt2img_sampler
gr.update(value='Euler'), # ui_img2img_sampler
gr.update(value='Simple'), # ui_txt2img_scheduler
gr.update(value='Simple'), # ui_img2img_scheduler
]
return [
gr.update(visible=True), # ui_vae
gr.update(visible=True, value=1), # ui_clip_skip
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=True, value='Queue'), # ui_forge_async_loading
gr.update(visible=True, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=True, value=total_vram - 1024), # ui_forge_inference_memory
gr.update(value=896), # ui_txt2img_width
gr.update(value=1024), # ui_img2img_width
gr.update(value=1152), # ui_txt2img_height
gr.update(value=1024), # ui_img2img_height
gr.update(value=7), # ui_txt2img_cfg
gr.update(value=7), # ui_img2img_cfg
gr.update(visible=True, value=3.5), # ui_txt2img_distilled_cfg
gr.update(visible=True, value=3.5), # ui_img2img_distilled_cfg
gr.update(value='DPM++ 2M'), # ui_txt2img_sampler
gr.update(value='DPM++ 2M'), # ui_img2img_sampler
gr.update(value='Automatic'), # ui_txt2img_scheduler
gr.update(value='Automatic'), # ui_img2img_scheduler
]
|