File size: 16,884 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import torch
import time

import packages_3rdparty.webui_lora_collection.lora as lora_utils_webui
import packages_3rdparty.comfyui_lora_collection.lora as lora_utils_comfyui

from tqdm import tqdm
from backend import memory_management, utils
from backend.args import dynamic_args


class ForgeLoraCollection:
    # TODO
    pass


extra_weight_calculators = {}

lora_utils_forge = ForgeLoraCollection()

lora_collection_priority = [lora_utils_forge, lora_utils_webui, lora_utils_comfyui]


def get_function(function_name: str):
    for lora_collection in lora_collection_priority:
        if hasattr(lora_collection, function_name):
            return getattr(lora_collection, function_name)


def load_lora(lora, to_load):
    patch_dict, remaining_dict = get_function('load_lora')(lora, to_load)
    return patch_dict, remaining_dict


def model_lora_keys_clip(model, key_map={}):
    return get_function('model_lora_keys_clip')(model, key_map)


def model_lora_keys_unet(model, key_map={}):
    return get_function('model_lora_keys_unet')(model, key_map)


@torch.inference_mode()
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype):
    # Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L33

    dora_scale = memory_management.cast_to_device(dora_scale, weight.device, computation_dtype)
    lora_diff *= alpha
    weight_calc = weight + lora_diff.type(weight.dtype)
    weight_norm = (
        weight_calc.transpose(0, 1)
        .reshape(weight_calc.shape[1], -1)
        .norm(dim=1, keepdim=True)
        .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
        .transpose(0, 1)
    )

    weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
    if strength != 1.0:
        weight_calc -= weight
        weight += strength * weight_calc
    else:
        weight[:] = weight_calc
    return weight


@torch.inference_mode()
def merge_lora_to_weight(patches, weight, key="online_lora", computation_dtype=torch.float32):
    # Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L446

    weight_original_dtype = weight.dtype
    weight = weight.to(dtype=computation_dtype)

    for p in patches:
        strength = p[0]
        v = p[1]
        strength_model = p[2]
        offset = p[3]
        function = p[4]
        if function is None:
            function = lambda a: a

        old_weight = None
        if offset is not None:
            old_weight = weight
            weight = weight.narrow(offset[0], offset[1], offset[2])

        if strength_model != 1.0:
            weight *= strength_model

        if isinstance(v, list):
            v = (merge_lora_to_weight(v[1:], v[0].clone(), key),)

        patch_type = ''

        if len(v) == 1:
            patch_type = "diff"
        elif len(v) == 2:
            patch_type = v[0]
            v = v[1]

        if patch_type == "diff":
            w1 = v[0]
            if strength != 0.0:
                if w1.shape != weight.shape:
                    if w1.ndim == weight.ndim == 4:
                        new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
                        print(f'Merged with {key} channel changed to {new_shape}')
                        new_diff = strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
                        new_weight = torch.zeros(size=new_shape).to(weight)
                        new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight
                        new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff
                        new_weight = new_weight.contiguous().clone()
                        weight = new_weight
                    else:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                else:
                    weight += strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
        elif patch_type == "lora":
            mat1 = memory_management.cast_to_device(v[0], weight.device, computation_dtype)
            mat2 = memory_management.cast_to_device(v[1], weight.device, computation_dtype)
            dora_scale = v[4]
            if v[2] is not None:
                alpha = v[2] / mat2.shape[0]
            else:
                alpha = 1.0

            if v[3] is not None:
                mat3 = memory_management.cast_to_device(v[3], weight.device, computation_dtype)
                final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
            try:
                lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
                if dora_scale is not None:
                    weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                print("ERROR {} {} {}".format(patch_type, key, e))
                raise e
        elif patch_type == "lokr":
            w1 = v[0]
            w2 = v[1]
            w1_a = v[3]
            w1_b = v[4]
            w2_a = v[5]
            w2_b = v[6]
            t2 = v[7]
            dora_scale = v[8]
            dim = None

            if w1 is None:
                dim = w1_b.shape[0]
                w1 = torch.mm(memory_management.cast_to_device(w1_a, weight.device, computation_dtype),
                              memory_management.cast_to_device(w1_b, weight.device, computation_dtype))
            else:
                w1 = memory_management.cast_to_device(w1, weight.device, computation_dtype)

            if w2 is None:
                dim = w2_b.shape[0]
                if t2 is None:
                    w2 = torch.mm(memory_management.cast_to_device(w2_a, weight.device, computation_dtype),
                                  memory_management.cast_to_device(w2_b, weight.device, computation_dtype))
                else:
                    w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                      memory_management.cast_to_device(t2, weight.device, computation_dtype),
                                      memory_management.cast_to_device(w2_b, weight.device, computation_dtype),
                                      memory_management.cast_to_device(w2_a, weight.device, computation_dtype))
            else:
                w2 = memory_management.cast_to_device(w2, weight.device, computation_dtype)

            if len(w2.shape) == 4:
                w1 = w1.unsqueeze(2).unsqueeze(2)
            if v[2] is not None and dim is not None:
                alpha = v[2] / dim
            else:
                alpha = 1.0

            try:
                lora_diff = torch.kron(w1, w2).reshape(weight.shape)
                if dora_scale is not None:
                    weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                print("ERROR {} {} {}".format(patch_type, key, e))
                raise e
        elif patch_type == "loha":
            w1a = v[0]
            w1b = v[1]
            if v[2] is not None:
                alpha = v[2] / w1b.shape[0]
            else:
                alpha = 1.0

            w2a = v[3]
            w2b = v[4]
            dora_scale = v[7]
            if v[5] is not None:
                t1 = v[5]
                t2 = v[6]
                m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                  memory_management.cast_to_device(t1, weight.device, computation_dtype),
                                  memory_management.cast_to_device(w1b, weight.device, computation_dtype),
                                  memory_management.cast_to_device(w1a, weight.device, computation_dtype))

                m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                  memory_management.cast_to_device(t2, weight.device, computation_dtype),
                                  memory_management.cast_to_device(w2b, weight.device, computation_dtype),
                                  memory_management.cast_to_device(w2a, weight.device, computation_dtype))
            else:
                m1 = torch.mm(memory_management.cast_to_device(w1a, weight.device, computation_dtype),
                              memory_management.cast_to_device(w1b, weight.device, computation_dtype))
                m2 = torch.mm(memory_management.cast_to_device(w2a, weight.device, computation_dtype),
                              memory_management.cast_to_device(w2b, weight.device, computation_dtype))

            try:
                lora_diff = (m1 * m2).reshape(weight.shape)
                if dora_scale is not None:
                    weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                print("ERROR {} {} {}".format(patch_type, key, e))
                raise e
        elif patch_type == "glora":
            if v[4] is not None:
                alpha = v[4] / v[0].shape[0]
            else:
                alpha = 1.0

            dora_scale = v[5]

            a1 = memory_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, computation_dtype)
            a2 = memory_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, computation_dtype)
            b1 = memory_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, computation_dtype)
            b2 = memory_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, computation_dtype)

            try:
                lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
                if dora_scale is not None:
                    weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                print("ERROR {} {} {}".format(patch_type, key, e))
                raise e
        elif patch_type in extra_weight_calculators:
            weight = extra_weight_calculators[patch_type](weight, strength, v)
        else:
            print("patch type not recognized {} {}".format(patch_type, key))

        if old_weight is not None:
            weight = old_weight

    weight = weight.to(dtype=weight_original_dtype)
    return weight


from backend import operations


class LoraLoader:
    def __init__(self, model):
        self.model = model
        self.patches = {}
        self.backup = {}
        self.online_backup = []
        self.dirty = False

    def clear_patches(self):
        self.patches.clear()
        self.dirty = True
        return

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        p = set()
        model_sd = self.model.state_dict()

        for k in patches:
            offset = None
            function = None

            if isinstance(k, str):
                key = k
            else:
                offset = k[1]
                key = k[0]
                if len(k) > 2:
                    function = k[2]

            if key in model_sd:
                p.add(k)
                current_patches = self.patches.get(key, [])
                current_patches.append([strength_patch, patches[k], strength_model, offset, function])
                self.patches[key] = current_patches

        self.dirty = True
        return list(p)

    @torch.inference_mode()
    def refresh(self, target_device=None, offload_device=torch.device('cpu')):
        if not self.dirty:
            return

        self.dirty = False

        execution_start_time = time.perf_counter()

        # Restore

        for m in set(self.online_backup):
            del m.forge_online_loras

        self.online_backup = []

        for k, w in self.backup.items():
            if not isinstance(w, torch.nn.Parameter):
                # In very few cases
                w = torch.nn.Parameter(w, requires_grad=False)

            utils.set_attr_raw(self.model, k, w)

        self.backup = {}

        online_mode = dynamic_args.get('online_lora', False)

        # Patch

        for key, current_patches in (tqdm(self.patches.items(), desc=f'Patching LoRAs for {type(self.model).__name__}') if len(self.patches) > 0 else self.patches):
            try:
                parent_layer, child_key, weight = utils.get_attr_with_parent(self.model, key)
                assert isinstance(weight, torch.nn.Parameter)
            except:
                raise ValueError(f"Wrong LoRA Key: {key}")

            if key not in self.backup:
                self.backup[key] = weight.to(device=offload_device)

            if online_mode:
                if not hasattr(parent_layer, 'forge_online_loras'):
                    parent_layer.forge_online_loras = {}

                parent_layer.forge_online_loras[child_key] = current_patches
                self.online_backup.append(parent_layer)
                continue

            bnb_layer = None

            if operations.bnb_avaliable:
                if hasattr(weight, 'bnb_quantized'):
                    bnb_layer = parent_layer
                    if weight.bnb_quantized:
                        weight_original_device = weight.device

                        if target_device is not None:
                            assert target_device.type == 'cuda', 'BNB Must use CUDA!'
                            weight = weight.to(target_device)
                        else:
                            weight = weight.cuda()

                        from backend.operations_bnb import functional_dequantize_4bit
                        weight = functional_dequantize_4bit(weight)

                        if target_device is None:
                            weight = weight.to(device=weight_original_device)
                    else:
                        weight = weight.data

            if target_device is not None:
                try:
                    weight = weight.to(device=target_device)
                except:
                    print('Moving layer weight failed. Retrying by offloading models.')
                    self.model.to(device=offload_device)
                    memory_management.soft_empty_cache()
                    weight = weight.to(device=target_device)

            gguf_cls, gguf_type, gguf_real_shape = None, None, None

            if hasattr(weight, 'is_gguf'):
                from backend.operations_gguf import dequantize_tensor
                gguf_cls = weight.gguf_cls
                gguf_type = weight.gguf_type
                gguf_real_shape = weight.gguf_real_shape
                weight = dequantize_tensor(weight)

            try:
                weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32)
            except:
                print('Patching LoRA weights failed. Retrying by offloading models.')
                self.model.to(device=offload_device)
                memory_management.soft_empty_cache()
                weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32)

            if bnb_layer is not None:
                bnb_layer.reload_weight(weight)
                continue

            if gguf_cls is not None:
                from backend.operations_gguf import ParameterGGUF
                weight = gguf_cls.quantize_pytorch(weight, gguf_real_shape)
                utils.set_attr_raw(self.model, key, ParameterGGUF.make(
                    data=weight,
                    gguf_type=gguf_type,
                    gguf_cls=gguf_cls,
                    gguf_real_shape=gguf_real_shape
                ))
                continue

            utils.set_attr_raw(self.model, key, torch.nn.Parameter(weight, requires_grad=False))

        # Time

        moving_time = time.perf_counter() - execution_start_time

        if moving_time > 0.1:
            print(f'LoRA patching has taken {moving_time:.2f} seconds')

        return