Spaces:
Runtime error
Runtime error
File size: 16,884 Bytes
6831a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import torch
import time
import packages_3rdparty.webui_lora_collection.lora as lora_utils_webui
import packages_3rdparty.comfyui_lora_collection.lora as lora_utils_comfyui
from tqdm import tqdm
from backend import memory_management, utils
from backend.args import dynamic_args
class ForgeLoraCollection:
# TODO
pass
extra_weight_calculators = {}
lora_utils_forge = ForgeLoraCollection()
lora_collection_priority = [lora_utils_forge, lora_utils_webui, lora_utils_comfyui]
def get_function(function_name: str):
for lora_collection in lora_collection_priority:
if hasattr(lora_collection, function_name):
return getattr(lora_collection, function_name)
def load_lora(lora, to_load):
patch_dict, remaining_dict = get_function('load_lora')(lora, to_load)
return patch_dict, remaining_dict
def model_lora_keys_clip(model, key_map={}):
return get_function('model_lora_keys_clip')(model, key_map)
def model_lora_keys_unet(model, key_map={}):
return get_function('model_lora_keys_unet')(model, key_map)
@torch.inference_mode()
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype):
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L33
dora_scale = memory_management.cast_to_device(dora_scale, weight.device, computation_dtype)
lora_diff *= alpha
weight_calc = weight + lora_diff.type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * weight_calc
else:
weight[:] = weight_calc
return weight
@torch.inference_mode()
def merge_lora_to_weight(patches, weight, key="online_lora", computation_dtype=torch.float32):
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L446
weight_original_dtype = weight.dtype
weight = weight.to(dtype=computation_dtype)
for p in patches:
strength = p[0]
v = p[1]
strength_model = p[2]
offset = p[3]
function = p[4]
if function is None:
function = lambda a: a
old_weight = None
if offset is not None:
old_weight = weight
weight = weight.narrow(offset[0], offset[1], offset[2])
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (merge_lora_to_weight(v[1:], v[0].clone(), key),)
patch_type = ''
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "diff":
w1 = v[0]
if strength != 0.0:
if w1.shape != weight.shape:
if w1.ndim == weight.ndim == 4:
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
print(f'Merged with {key} channel changed to {new_shape}')
new_diff = strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
new_weight = torch.zeros(size=new_shape).to(weight)
new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight
new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff
new_weight = new_weight.contiguous().clone()
weight = new_weight
else:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lora":
mat1 = memory_management.cast_to_device(v[0], weight.device, computation_dtype)
mat2 = memory_management.cast_to_device(v[1], weight.device, computation_dtype)
dora_scale = v[4]
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
mat3 = memory_management.cast_to_device(v[3], weight.device, computation_dtype)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(memory_management.cast_to_device(w1_a, weight.device, computation_dtype),
memory_management.cast_to_device(w1_b, weight.device, computation_dtype))
else:
w1 = memory_management.cast_to_device(w1, weight.device, computation_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(memory_management.cast_to_device(w2_a, weight.device, computation_dtype),
memory_management.cast_to_device(w2_b, weight.device, computation_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t2, weight.device, computation_dtype),
memory_management.cast_to_device(w2_b, weight.device, computation_dtype),
memory_management.cast_to_device(w2_a, weight.device, computation_dtype))
else:
w2 = memory_management.cast_to_device(w2, weight.device, computation_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None:
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t1, weight.device, computation_dtype),
memory_management.cast_to_device(w1b, weight.device, computation_dtype),
memory_management.cast_to_device(w1a, weight.device, computation_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t2, weight.device, computation_dtype),
memory_management.cast_to_device(w2b, weight.device, computation_dtype),
memory_management.cast_to_device(w2a, weight.device, computation_dtype))
else:
m1 = torch.mm(memory_management.cast_to_device(w1a, weight.device, computation_dtype),
memory_management.cast_to_device(w1b, weight.device, computation_dtype))
m2 = torch.mm(memory_management.cast_to_device(w2a, weight.device, computation_dtype),
memory_management.cast_to_device(w2b, weight.device, computation_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type == "glora":
if v[4] is not None:
alpha = v[4] / v[0].shape[0]
else:
alpha = 1.0
dora_scale = v[5]
a1 = memory_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, computation_dtype)
a2 = memory_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, computation_dtype)
b1 = memory_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, computation_dtype)
b2 = memory_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, computation_dtype)
try:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type in extra_weight_calculators:
weight = extra_weight_calculators[patch_type](weight, strength, v)
else:
print("patch type not recognized {} {}".format(patch_type, key))
if old_weight is not None:
weight = old_weight
weight = weight.to(dtype=weight_original_dtype)
return weight
from backend import operations
class LoraLoader:
def __init__(self, model):
self.model = model
self.patches = {}
self.backup = {}
self.online_backup = []
self.dirty = False
def clear_patches(self):
self.patches.clear()
self.dirty = True
return
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
p = set()
model_sd = self.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
if key in model_sd:
p.add(k)
current_patches = self.patches.get(key, [])
current_patches.append([strength_patch, patches[k], strength_model, offset, function])
self.patches[key] = current_patches
self.dirty = True
return list(p)
@torch.inference_mode()
def refresh(self, target_device=None, offload_device=torch.device('cpu')):
if not self.dirty:
return
self.dirty = False
execution_start_time = time.perf_counter()
# Restore
for m in set(self.online_backup):
del m.forge_online_loras
self.online_backup = []
for k, w in self.backup.items():
if not isinstance(w, torch.nn.Parameter):
# In very few cases
w = torch.nn.Parameter(w, requires_grad=False)
utils.set_attr_raw(self.model, k, w)
self.backup = {}
online_mode = dynamic_args.get('online_lora', False)
# Patch
for key, current_patches in (tqdm(self.patches.items(), desc=f'Patching LoRAs for {type(self.model).__name__}') if len(self.patches) > 0 else self.patches):
try:
parent_layer, child_key, weight = utils.get_attr_with_parent(self.model, key)
assert isinstance(weight, torch.nn.Parameter)
except:
raise ValueError(f"Wrong LoRA Key: {key}")
if key not in self.backup:
self.backup[key] = weight.to(device=offload_device)
if online_mode:
if not hasattr(parent_layer, 'forge_online_loras'):
parent_layer.forge_online_loras = {}
parent_layer.forge_online_loras[child_key] = current_patches
self.online_backup.append(parent_layer)
continue
bnb_layer = None
if operations.bnb_avaliable:
if hasattr(weight, 'bnb_quantized'):
bnb_layer = parent_layer
if weight.bnb_quantized:
weight_original_device = weight.device
if target_device is not None:
assert target_device.type == 'cuda', 'BNB Must use CUDA!'
weight = weight.to(target_device)
else:
weight = weight.cuda()
from backend.operations_bnb import functional_dequantize_4bit
weight = functional_dequantize_4bit(weight)
if target_device is None:
weight = weight.to(device=weight_original_device)
else:
weight = weight.data
if target_device is not None:
try:
weight = weight.to(device=target_device)
except:
print('Moving layer weight failed. Retrying by offloading models.')
self.model.to(device=offload_device)
memory_management.soft_empty_cache()
weight = weight.to(device=target_device)
gguf_cls, gguf_type, gguf_real_shape = None, None, None
if hasattr(weight, 'is_gguf'):
from backend.operations_gguf import dequantize_tensor
gguf_cls = weight.gguf_cls
gguf_type = weight.gguf_type
gguf_real_shape = weight.gguf_real_shape
weight = dequantize_tensor(weight)
try:
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32)
except:
print('Patching LoRA weights failed. Retrying by offloading models.')
self.model.to(device=offload_device)
memory_management.soft_empty_cache()
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32)
if bnb_layer is not None:
bnb_layer.reload_weight(weight)
continue
if gguf_cls is not None:
from backend.operations_gguf import ParameterGGUF
weight = gguf_cls.quantize_pytorch(weight, gguf_real_shape)
utils.set_attr_raw(self.model, key, ParameterGGUF.make(
data=weight,
gguf_type=gguf_type,
gguf_cls=gguf_cls,
gguf_real_shape=gguf_real_shape
))
continue
utils.set_attr_raw(self.model, key, torch.nn.Parameter(weight, requires_grad=False))
# Time
moving_time = time.perf_counter() - execution_start_time
if moving_time > 0.1:
print(f'LoRA patching has taken {moving_time:.2f} seconds')
return
|