File size: 899 Bytes
225a9a7
 
 
7222a71
 
225a9a7
dbcb65d
bd366a6
 
225a9a7
bd366a6
225a9a7
bd366a6
 
 
 
 
 
 
 
 
225a9a7
 
7222a71
225a9a7
bd366a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from transformers import pipeline

# Load the text classification pipeline
pipeline = pipeline("text-classification", model="ProsusAI/finbert", trust_remote_code=True)

def predict(input_text):
  predictions = pipeline(input_text, threshold=0.5, return_scores=True)
  return predictions[0]

# Define the Gradio interface
gradio_app = gr.Interface(
  predict,
  inputs=gr.Textbox(label="Write a text"),
  outputs=None# Remove outputs here
  components=[ # Add components to display probabilities
    gr.Label(label="Neutral: {:.2f}".format(predictions[0]["score"][0])),
    gr.Label(label="Positive: {:.2f}".format(predictions[0]["score"][1])),
    gr.Label(label="Negative: {:.2f}".format(predictions[0]["score"][2])),
  ],
  title="Financial Sentiment Analysis",
)

# Launch the Gradio interface
if __name__ == "__main__":
  gradio_app.launch()