File size: 7,563 Bytes
c0f8b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1260b6
 
 
c0f8b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1260b6
c0f8b72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import sys, os
import numpy as np
import cv2

sys.path.append(os.getcwd())

from face_detection import FaceDetection
from deformation_detection import DeformationDetection
from deepfake_detection import DeepfakeDetection


from utils import readb64, img2base64, binary2video, extract_frames

class FaceFakePipelineImage:
    def __init__(self, device='cpu', gpu_id=0, weights='weights/model_params_ffpp_c23.pickle'):
        self.face_detection = FaceDetection(batch_size=64)
        self.deformation_detection = DeformationDetection(batch_size=64)
        self.deepfake_detection = DeepfakeDetection(batch_size=64)

    def preprocess(self, data):
        image_base64 = data.pop("images", data)

        if not type(image_base64) == list:
            image_base64 = [image_base64]
        elif len(image_base64) > 1:
            raise Exception("FaceFakePipelineImage only accepts 1 image/frame")
        
        images = [readb64(image) for image in image_base64]
        return images

    def inference(self, images, config_payload):
        frame_detections = self.face_detection(images, confidence_threshold=config_payload['face_detection_threshold'])
        if len(frame_detections) == 0:
            return {'results': [],
                    'message': 'No face detected'}

        # only process 1 frame
        frame_detections = frame_detections[0]

        deform_labels, deform_probs, heatmaps = self.deformation_detection(
            frame_detections['face_images'], 
            confidence_threshold=config_payload['deformation_detection_threshold'], 
            return_heatmap=True
        )

        if 'fake' in deform_labels:
            results = []
            for i, image in enumerate(frame_detections['face_images']):
                results.append({
                    'deformation_assessment': {
                        'is_fake': True if deform_labels[i] == 'fake' else False,
                        'fake_score': deform_probs[i],
                        'heatmap': img2base64(heatmaps[i]),
                    },
                    'deepfake_assesment': None,
                    'bounding_box': frame_detections['face_bbox'][i],
                })
            return {'results': results,
                    'message': 'It likely detects Fake'}

        # if none of detected faces are fake, proceeed to deepfake detection as well
        deepfake_labels, deepfake_probs = self.deepfake_detection(
            frame_detections['face_images'],
            confidence_threshold=config_payload['deepfake_detection_threshold'],
        )

        results = []
        for i, image in enumerate(frame_detections['face_images']):
            results.append({
                'deformation_assessment': {
                    'is_fake': True if deform_labels[i] == 'fake' else False,
                    'fake_score': deform_probs[i],
                    'heatmap': img2base64(heatmaps[i]),
                },
                'deepfake_assesment': {
                    'is_fake': True if deepfake_labels[i] == 'fake' else False,
                    'fake_score': deepfake_probs[i],
                },
                'bounding_box': frame_detections['face_bbox'][i]
            })
        
        if 'fake' in deepfake_labels:
            return {'results': results,
                    'message': 'It likely detects Fake'}
        
        # If none are fake
        return {'results': results,
                'message': 'It likely detects Real'}

    def get_response(self, inference_result):
        response = {
            'job':{
                'result': {
                    'status': 'success',
                    'analytic_type': 'FAKE_DETECTION',
                    'results': inference_result['results']
                }
            },
            'message': inference_result['message'],
            'ok': True,
        }
        return response

    def __call__(self, data, config_payload):
        images = self.preprocess(data)
        inference_result = self.inference(images, config_payload)
        response = self.get_response(inference_result)
        return response

class FaceFakePipelineVideo:
    def __init__(self, device='cpu', gpu_id=0, weights='weights/model_params_ffpp_c23.pickle'):
        self.face_detection = FaceDetection(batch_size=1)
        self.deepfake_detection = DeepfakeDetection(batch_size=64)

    def preprocess(self, video_path, config_payload):
        return extract_frames(
            video_path, 
            interval=config_payload['frame_sampling_interval'], 
            max_frames=config_payload['frame_sampling_max']
        )
    
    def inference(self, images, config_payload):
        frame_detections = self.face_detection(images, confidence_threshold=config_payload['face_detection_threshold'])

        if len(frame_detections) == 0:
            return {'results': [],
                    'message': 'No face detected'}

        overal_probs = []
        for frame in frame_detections:
            deepfake_labels, deepfake_probs = self.deepfake_detection(
                frame['face_images'],
                confidence_threshold=config_payload['deepfake_detection_threshold'],
            )
            
            # Pick highest face fakeness as frame fake probability
            frame_prob = max(deepfake_probs)
            overal_probs.append(frame_prob)

        overal_prob = np.mean(overal_probs)
        overal_label = True if overal_prob >= config_payload['deepfake_detection_threshold'] else False
        message = 'It likely detects Fake' if overal_label else 'It likely detects Real'
        return {
            'results': [{   
                'deformation_assessment': None, 
                'deepfake_assesment': {
                    'is_fake': overal_label,
                    'fake_score': overal_prob,
                },
                'bounding_box': None,
            }],
                'message': message
        }
        

    def get_response(self, inference_result):
        response = {
            'job':{
                'result': {
                    'status': 'success',
                    'analytic_type': 'FAKE_DETECTION',
                    'results': inference_result['results']
                }
            },
            'message': inference_result['message'],
            'ok': True,
        }
        return response

    def __call__(self, video_path, config_payload):
        images = self.preprocess(video_path, config_payload)
        inference_result = self.inference(images, config_payload)
        response = self.get_response(inference_result)
        return response
    

def image_test():

    # init pipeline
    pipeline = FaceFakePipelineImage()
    config_payload = {
        'face_detection_threshold': 0.997,
        'deformation_detection_threshold': 0.6,
        'deepfake_detection_threshold': 0.65,
    }

    img_base64_wefie = img2base64(cv2.imread('sample_files/wefie.jpg'))


    payload = {'images': [img_base64_wefie]}
    pred = pipeline(payload, config_payload)



    # show results
    from pprint import pprint
    pprint(pred)

def video_test():
    video_pipeline = FaceFakePipelineVideo()
    config_payload = {
        'face_detection_threshold': 0.997,
        'deepfake_detection_threshold': 0.65,
        'frame_sampling_interval': 60,
        'frame_sampling_max': 50,
    }

    pred = video_pipeline('sample_files\messi_deepfake.mp4', config_payload)

    from pprint import pprint
    pprint(pred)

if __name__ == "__main__":
    image_test()
    video_test()