File size: 9,583 Bytes
24c3abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import re
import torch
import ffmpeg
import yt_dlp
import torchaudio
import gradio as gr
import shutil

from torch.utils.data import Dataset, DataLoader
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound, CouldNotRetrieveTranscript, VideoUnavailable
from youtube_transcript_api.formatters import TextFormatter
from transformers import (
    pipeline,
    WhisperProcessor,
    WhisperForConditionalGeneration,
)

from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse

import uvicorn

# === FASTAPI APP ===
app = FastAPI()

# === UTILS ===

def is_youtube_url(url):
    return "youtube.com" in url or "youtu.be" in url

def is_web_url(url):
    return url.startswith("http://") or url.startswith("https://")

def get_video_id(url):
    match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11})', url)
    return match.group(1) if match else None

def try_download_transcript(video_id):
    try:
        transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=["en"])
        formatted = TextFormatter().format_transcript(transcript)
        return formatted
    except (TranscriptsDisabled, NoTranscriptFound, CouldNotRetrieveTranscript, VideoUnavailable):
        return None
    except Exception as e:
        print(f"Transcript error: {e}")
        return None

def download_audio_youtube(url, output_path="audio.wav", cookies_path=None):
    import subprocess

    fallback_video_path = "fallback_video.mp4"
    video_id= get_video_id(url)

    ydl_opts = {
        "format": "best",
        "outtmpl": fallback_video_path,
        "user_agent": "com.google.android.youtube/17.31.35 (Linux; U; Android 11)",
        "compat_opts": ["allow_unplayable_formats"]
    }

    if cookies_path:
        ydl_opts["cookiefile"] = cookies_path

    try:
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([url])
    except Exception as e:
        try:
            list_cmd = ["yt-dlp", "-F", url]
            if cookies_path:
                list_cmd += ["--cookies", cookies_path]
            result = subprocess.run(list_cmd, capture_output=True, text=True, timeout=15)
            formats = result.stdout or "No formats found."
        except Exception as format_err:
            formats = f"\u26a0\ufe0f Could not list formats due to: {format_err}"

        raise RuntimeError(
    "\u26a0\ufe0f Could not download this YouTube video due to restrictions. "
    "Please use this alternative tool to extract the transcript manually:\n\n"
    f"<https://youtubetotranscript.com/transcript?v={video_id}&current_language_code=en>"
)

    return extract_audio_from_video(fallback_video_path, audio_path=output_path)

def download_video_direct(url, output_path="video.mp4"):
    ydl_opts = {
        "format": "best",
        "outtmpl": output_path
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        ydl.download([url])
    return output_path

def extract_audio_from_video(video_path, audio_path="audio.wav"):
    ffmpeg.input(video_path).output(audio_path, ac=1, ar=16000).run(overwrite_output=True)
    return audio_path

def split_audio(input_path, chunk_length_sec=30, target_sr=16000):
    waveform, sr = torchaudio.load(input_path)
    if sr != target_sr:
        resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)
        waveform = resampler(waveform)
    if waveform.shape[0] > 1:
        waveform = waveform.mean(dim=0, keepdim=True)
    chunk_samples = target_sr * chunk_length_sec
    chunks = [waveform[:, i:i+chunk_samples] for i in range(0, waveform.shape[1], chunk_samples)]
    return chunks, target_sr

class AudioChunksDataset(Dataset):
    def __init__(self, chunks):
        self.chunks = chunks

    def __len__(self):
        return len(self.chunks)

    def __getitem__(self, idx):
        return self.chunks[idx].squeeze(0)

def collate_audio_batch(batch):
    max_len = max([b.shape[0] for b in batch])
    padded_batch = [torch.nn.functional.pad(b, (0, max_len - b.shape[0])) for b in batch]
    return torch.stack(padded_batch)

def transcribe_chunks_dataset(chunks, sr, model_name="openai/whisper-small", batch_size=4):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    processor = WhisperProcessor.from_pretrained(model_name)
    model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
    model.eval()

    dataset = AudioChunksDataset(chunks)
    dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_audio_batch)

    full_transcript = []
    for batch_waveforms in dataloader:
        wave_list = [waveform.numpy() for waveform in batch_waveforms]
        input_features = processor(wave_list, sampling_rate=sr, return_tensors="pt", padding="max_length").input_features.to(device)
        with torch.no_grad():
            predicted_ids = model.generate(input_features, language="en")
        transcriptions = processor.batch_decode(predicted_ids, skip_special_tokens=True)
        full_transcript.extend(transcriptions)

    return " ".join(full_transcript)

def summarize_with_bart(text, max_tokens=1024):
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
    sentences = text.split(". ")
    chunks = []
    current_chunk = ""

    for sentence in sentences:
        if len(current_chunk + sentence) <= max_tokens:
            current_chunk += sentence + ". "
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence + ". "
    if current_chunk:
        chunks.append(current_chunk.strip())

    summary = ""
    for chunk in chunks:
        out = summarizer(chunk, max_length=150, min_length=30, do_sample=False)
        summary += out[0]['summary_text'] + " "

    return summary.strip()

def generate_questions_with_pipeline(text, num_questions=5):
    question_generator = pipeline("text2text-generation", model="valhalla/t5-base-qg-hl", device=0 if torch.cuda.is_available() else -1)
    sentences = text.split(". ")
    questions = []

    for sentence in sentences[:num_questions * 2]:
        if not sentence.strip():
            continue
        input_text = f"generate question: {sentence.strip()}"
        out = question_generator(input_text, max_length=50, do_sample=True, temperature=0.9)
        question = out[0]["generated_text"].strip()
        if question:
            questions.append(question)

    return questions[:num_questions]

# === FASTAPI ROUTE FOR DIRECT FILE UPLOAD ===

@app.post("/upload")
async def upload(file: UploadFile = File(...)):
    try:
        file_path = f"temp_{file.filename}"
        with open(file_path, "wb") as f:
            f.write(await file.read())

        audio_path = extract_audio_from_video(file_path)
        chunks, sr = split_audio(audio_path, chunk_length_sec=15)
        transcript = transcribe_chunks_dataset(chunks, sr)
        summary = summarize_with_bart(transcript)
        questions = generate_questions_with_pipeline(summary)
        os.remove(file_path)
        return JSONResponse({"summary": summary, "questions": questions})
    except Exception as e:
        return JSONResponse({"error": str(e)})

# === GRADIO UI ===

def process_input_gradio(url_input, file_input, text_input):
    try:
        transcript = ""

        if text_input:
            transcript = text_input.strip()

        elif file_input is not None:
            audio_path = extract_audio_from_video(file_input.name)
            chunks, sr = split_audio(audio_path, chunk_length_sec=15)
            transcript = transcribe_chunks_dataset(chunks, sr)

        elif url_input:
            if is_youtube_url(url_input):
                video_id = get_video_id(url_input)
                transcript = try_download_transcript(video_id)
                if not transcript:
                    audio_path = download_audio_youtube(url_input)
                    chunks, sr = split_audio(audio_path, chunk_length_sec=15)
                    transcript = transcribe_chunks_dataset(chunks, sr)
            else:
                video_file = download_video_direct(url_input)
                audio_path = extract_audio_from_video(video_file)
                chunks, sr = split_audio(audio_path, chunk_length_sec=15)
                transcript = transcribe_chunks_dataset(chunks, sr)
        else:
            return "Please provide a URL, upload a video file, or paste text.", ""

        summary = summarize_with_bart(transcript)
        questions = generate_questions_with_pipeline(summary)
        return summary, "\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
    except Exception as e:
        return f"Error: {str(e)}", ""

iface = gr.Interface(
    fn=process_input_gradio,
    inputs=[
        gr.Textbox(label="YouTube or Direct Video URL", placeholder="https://..."),
        gr.File(label="Or Upload a Video File", file_types=[".mp4", ".mkv", ".webm"]),
        gr.Textbox(label="Or Paste Transcript/Text Directly", lines=10, placeholder="Paste transcript or text here...")
    ],
    outputs=[
        gr.Textbox(label="Summary", lines=10),
        gr.Textbox(label="Generated Questions", lines=10),
    ],
    title="Lecture Summary & Question Generator",
    description="Provide a YouTube/Direct video URL, upload a video file, or paste text. If the video is restricted, upload the video file directly."
)

app = gr.mount_gradio_app(app, iface, path="/")

# === RUNNING BOTH FASTAPI + GRADIO ===

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)