File size: 19,832 Bytes
f65e602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4433805
 
 
f65e602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import pandas as pd
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
from seqeval.metrics import accuracy_score, f1_score, classification_report
from seqeval.scheme import IOB2
import sklearn_crfsuite
from sklearn_crfsuite import metrics
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import Word2Vec, KeyedVectors
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder 
from torch.utils.data import Dataset, DataLoader 
from torch.nn.utils.rnn import pad_sequence
from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim.downloader as api
from itertools import product
from sklearn.model_selection import train_test_split, GridSearchCV
from joblib import dump


class preprocess_sentences():
    def __init__(self):
        pass

    def fit(self, X, y=None):
        print('PREPROCESSING')
        return self
    
    def transform(self, X):
        # X = train['tokens'], y = 
        sentences = X.apply(lambda x: x.tolist()).tolist()
        print('--> Preprocessing complete \n', flush=True)
        return sentences
    
EMBEDDING_DIM = 500
PAD_VALUE= -1
MAX_LENGTH = 376
BATCH_SIZE = 16

class Word2VecTransformer():
    def __init__(self, vector_size = EMBEDDING_DIM, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
        self.model = None
        self.vector_size = vector_size
        self.window = window
        self.min_count = min_count
        self.workers = workers
        self.embedding_dim = embedding_dim

    def fit(self, X, y):
        # https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
        # https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
        print('WORD2VEC:', flush=True)
        # This fits the word2vec model
        self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
                              , min_count=self.min_count, workers=self.workers)
        print('--> Word2Vec Fitted', flush=True)
        return self
    
    def transform(self, X):
        # This bit should transform the sentences
        embedded_sentences = []

        for sentence in X:
            sentence_vectors = []

            for word in sentence:
                if word in self.model.wv:
                    vec = self.model.wv[word]
                else:
                    vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
                
                sentence_vectors.append(vec)

            embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
        print('--> Embeddings Complete \n', flush=True)

        return embedded_sentences
    
class Word2VecTransformer_CRF():
    def __init__(self, vector_size = EMBEDDING_DIM, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
        self.model = None
        self.vector_size = vector_size
        self.window = window
        self.min_count = min_count
        self.workers = workers
        self.embedding_dim = embedding_dim

    def fit(self, X, y):
        # https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
        # https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
        print('WORD2VEC:', flush=True)
        # This fits the word2vec model
        self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
                              , min_count=self.min_count, workers=self.workers)
        print('--> Word2Vec Fitted', flush=True)
        return self
    
    def transform(self, X):
        # This bit should transform the sentences
        embedded_sentences = []

        for sentence in X:
            sentence_vectors = []

            for word in sentence:
                features = {
                    'bias': 1.0,
                    'word.lower()': word.lower(),
                    'word[-3:]': word[-3:],
                    'word[-2:]': word[-2:],
                    'word.isupper()': word.isupper(),
                    'word.istitle()': word.istitle(),
                    'word.isdigit()': word.isdigit(),
                }
                if word in self.model.wv:
                    vec = self.model.wv[word]
                else:
                    vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))

                # https://stackoverflow.com/questions/58736548/how-to-use-word-embedding-as-features-for-crf-sklearn-crfsuite-model-training
                for index in range(len(vec)):
                    features[f"embedding_{index}"] = vec[index]
                
                sentence_vectors.append(features)

            embedded_sentences.append(sentence_vectors)
        print('--> Embeddings Complete \n', flush=True)

        return embedded_sentences
    
class tfidfTransformer(BaseEstimator, TransformerMixin):
    def __init__(self):
        self.model = None
        self.embedding_dim = None
        self.idf = None
        self.vocab_size = None
        self.vocab = None

    def fit(self, X, y = None):
        print('TFIDF:', flush=True)
        joined_sentences = [' '.join(tokens) for tokens in X]
        self.model = TfidfVectorizer()
        self.model.fit(joined_sentences)
        self.vocab = self.model.vocabulary_
        self.idf = self.model.idf_
        self.vocab_size = len(self.vocab)
        self.embedding_dim = self.vocab_size
        print('--> TFIDF Fitted', flush=True)
        return self

    def transform(self, X):

        embedded = []
        for sentence in X:
            sent_vecs = []
            token_counts = {}
            for word in sentence:
                token_counts[word] = token_counts.get(word, 0) + 1

            sent_len = len(sentence)
            for word in sentence:
                vec = np.zeros(self.vocab_size)
                if word in self.vocab:
                    tf = token_counts[word] / sent_len
                    token_idx = self.vocab[word]
                    vec[token_idx] = tf * self.idf[token_idx]
                sent_vecs.append(vec)
            embedded.append(torch.tensor(sent_vecs, dtype=torch.float32))
        print('--> Embeddings Complete \n', flush=True)

        
        return embedded
        
class GloveTransformer(BaseEstimator, TransformerMixin):
    def __init__(self):
        self.model = None
        self.embedding_dim = 300

    def fit(self, X, y=None):
        print('GLOVE', flush = True)
        self.model = api.load('glove-wiki-gigaword-300')
        print('--> Glove Downloaded', flush=True)
        return self
    
    def transform(self, X):
        # This bit should transform the sentences
        print('--> Beginning embeddings', flush=True)
        embedded_sentences = []

        for sentence in X:
            sentence_vectors = []

            for word in sentence:
                if word in self.model:
                    vec = self.model[word]
                else:
                    vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
                
                sentence_vectors.append(vec)

            embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
        print('--> Embeddings Complete \n', flush=True)

        return embedded_sentences

class Bio2VecTransformer():
    def __init__(self, vector_size = 200, window = 5, min_count = 1, workers = 1, embedding_dim=200):
        self.model = None
        self.vector_size = vector_size
        self.window = window
        self.min_count = min_count
        self.workers = workers
        self.embedding_dim = embedding_dim

    def fit(self, X, y):
        print('BIO2VEC:', flush=True)
        # https://stackoverflow.com/questions/58055415/how-to-load-bio2vec-in-gensim
        self.model = Bio2VecModel
        print('--> BIO2VEC Fitted', flush=True)
        return self
    
    def transform(self, X):
        # This bit should transform the sentences
        embedded_sentences = []

        for sentence in X:
            sentence_vectors = []

            for word in sentence:
                if word in self.model:
                    vec = self.model[word]
                else:
                    vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
                
                sentence_vectors.append(vec)

            embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
        print('--> Embeddings Complete \n', flush=True)

        return embedded_sentences

class BiLSTM_NER(nn.Module):
    def __init__(self,input_dim, hidden_dim, tagset_size):
        super(BiLSTM_NER, self).__init__()

        # Embedding layer
        #Freeze= false means that it will fine tune
        #self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze = False, padding_idx=-1) 
        
        self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_dim*2, tagset_size)
    
    def forward(self, sentences):
        #embeds = self.embedding(sentences)
        lstm_out, _ = self.lstm(sentences)
        tag_scores = self.fc(lstm_out)
        
        return tag_scores
    
def pad(batch):
        # batch is a list of (X, y) pairs
        X_batch, y_batch = zip(*batch)

        # Convert to tensors
        X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in X_batch]
        y_batch = [torch.tensor(seq, dtype=torch.long) for seq in y_batch]

        # Pad sequences
        X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
        y_padded = pad_sequence(y_batch, batch_first=True, padding_value=PAD_VALUE)

        return X_padded, y_padded

def pred_pad(batch):
    X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in batch]
    X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
    return X_padded

class Ner_Dataset(Dataset):
        def __init__(self, X, y):
            self.X = X
            self.y = y
    
        def __len__(self):
            return len(self.X)
    
        def __getitem__(self, idx):
            return self.X[idx], self.y[idx]


class LSTM(BaseEstimator, ClassifierMixin):
    def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.epochs = epochs
        self.learning_rate = learning_rate
        self.tag2idx = tag2idx



    def fit(self, embedded, encoded_tags):
        #print('LSTM started:', flush=True)
        data = Ner_Dataset(embedded, encoded_tags)
        train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)

        self.model = self.train_LSTM(train_loader)
        #print('--> Epochs: ', self.epochs, flush=True)
        #print('--> Learning Rate: ', self.learning_rate)
        return self
    
    def predict(self, X): 
    # Switch to evaluation mode

        test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)

        self.model.eval()
        predictions = []

        # Iterate through test data
        with torch.no_grad():
            for X_batch in test_loader:
                X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
                
                tag_scores = self.model(X_batch)
                _, predicted_tags = torch.max(tag_scores, dim=2)

                flattened_pred = predicted_tags.view(-1)

                predictions.append(list(flattened_pred.cpu().numpy()))


        #print('before concat',predictions)
        #predictions = np.concatenate(predictions)
        #print('after concat',predictions)

        tag_encoder = LabelEncoder()
        tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])

        str_pred = []
        for sentence in predictions:
            str_sentence = tag_encoder.inverse_transform(sentence)
            str_pred.append(list(str_sentence))
        return str_pred


    def train_LSTM(self, train_loader): 

        input_dim = self.embedding_dim
        # Instantiate the lstm_model
        lstm_model = BiLSTM_NER(input_dim, hidden_dim=self.hidden_dim, tagset_size=len(self.tag2idx))
        lstm_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))

        # Loss function and optimizer
        loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE)  # Ignore padding
        optimizer = optim.Adam(lstm_model.parameters(), lr=self.learning_rate)
        #print('--> Training LSTM')

        # Training loop
        for epoch in range(self.epochs):
            total_loss = 0
            total_correct = 0
            total_words = 0
            lstm_model.train()  # Set model to training mode
            
            for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
                X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))

                # Zero gradients
                optimizer.zero_grad()

                # Forward pass
                tag_scores = lstm_model(X_batch)

                # Reshape and compute loss (ignore padded values)
                loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
                
                # Backward pass and optimization
                loss.backward()
                optimizer.step()

                total_loss += loss.item()

                # Compute accuracy for this batch
                # Get the predicted tags (index of max score)
                _, predicted_tags = torch.max(tag_scores, dim=2)

                # Flatten the tensors to compare word-by-word
                flattened_pred = predicted_tags.view(-1)
                flattened_true = y_batch.view(-1)

                # Exclude padding tokens from the accuracy calculation
                mask = flattened_true != PAD_VALUE
                correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()

                # Count the total words in the batch (ignoring padding)
                total_words_batch = mask.sum().item()

                # Update total correct and total words
                total_correct += correct
                total_words += total_words_batch

            avg_loss = total_loss / len(train_loader)
            avg_accuracy = total_correct / total_words * 100  # Accuracy in percentage

            #print(f'    ==> Epoch {epoch + 1}/{self.epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')

        return lstm_model
        
        
# Define the FeedForward NN Model
class FeedForwardNN_NER(nn.Module):
    def __init__(self, embedding_dim, hidden_dim, tagset_size):
        super(FeedForwardNN_NER, self).__init__()
        self.fc1 = nn.Linear(embedding_dim, hidden_dim)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim, tagset_size)
    
    def forward(self, x):
        x = self.fc1(x)  
        x = self.relu(x)
        logits = self.fc2(x)      
        return logits



class FeedforwardNN(BaseEstimator, ClassifierMixin):
    def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.epochs = epochs
        self.learning_rate = learning_rate
        self.tag2idx = tag2idx



    def fit(self, embedded, encoded_tags):
        print('Feed Forward NN: ', flush=True)
        data = Ner_Dataset(embedded, encoded_tags)
        train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)

        self.model = self.train_FF(train_loader)
        print('--> Feed Forward trained', flush=True)
        return self
    
    def predict(self, X): 
    # Switch to evaluation mode

        test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)

        self.model.eval()
        predictions = []

        # Iterate through test data
        with torch.no_grad():
            for X_batch in test_loader:
                X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
                
                tag_scores = self.model(X_batch)
                _, predicted_tags = torch.max(tag_scores, dim=2)

                # Flatten the tensors to compare word-by-word
                flattened_pred = predicted_tags.view(-1)
                predictions.append(flattened_pred.cpu().numpy())

        tag_encoder = LabelEncoder()
        tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])

        str_pred = []
        for sentence in predictions:
            str_sentence = tag_encoder.inverse_transform(sentence)
            str_pred.append(list(str_sentence))
        return str_pred


    def train_FF(self, train_loader): 

        

        # Instantiate the lstm_model
        ff_model = FeedForwardNN_NER(self.embedding_dim, hidden_dim=self.hidden_dim, tagset_size=len(self.tag2idx))
        ff_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))

        # Loss function and optimizer
        loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE)  # Ignore padding
        optimizer = optim.Adam(ff_model.parameters(), lr=self.learning_rate)
        print('--> Training FF')

        # Training loop
        for epoch in range(self.epochs):
            total_loss = 0
            total_correct = 0
            total_words = 0
            ff_model.train()  # Set model to training mode
            
            for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
                X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))

                # Zero gradients
                optimizer.zero_grad()

                # Forward pass
                tag_scores = ff_model(X_batch)

                # Reshape and compute loss (ignore padded values)
                loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
                
                # Backward pass and optimization
                loss.backward()
                optimizer.step()

                total_loss += loss.item()

                # Compute accuracy for this batch
                # Get the predicted tags (index of max score)
                _, predicted_tags = torch.max(tag_scores, dim=2)

                # Flatten the tensors to compare word-by-word
                flattened_pred = predicted_tags.view(-1)
                flattened_true = y_batch.view(-1)

                # Exclude padding tokens from the accuracy calculation
                mask = flattened_true != PAD_VALUE
                correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()

                # Count the total words in the batch (ignoring padding)
                total_words_batch = mask.sum().item()

                # Update total correct and total words
                total_correct += correct
                total_words += total_words_batch

            avg_loss = total_loss / len(train_loader)
            avg_accuracy = total_correct / total_words * 100  # Accuracy in percentage

            print(f'    ==> Epoch {epoch + 1}/{self.epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')

        return ff_model
        
crf = sklearn_crfsuite.CRF(
    algorithm='lbfgs',
    c1=0.1,
    c2=0.1,
    max_iterations=100,
    all_possible_transitions=True)