Spaces:
Sleeping
Sleeping
File size: 19,832 Bytes
f65e602 4433805 f65e602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import pandas as pd
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
from seqeval.metrics import accuracy_score, f1_score, classification_report
from seqeval.scheme import IOB2
import sklearn_crfsuite
from sklearn_crfsuite import metrics
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import Word2Vec, KeyedVectors
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim.downloader as api
from itertools import product
from sklearn.model_selection import train_test_split, GridSearchCV
from joblib import dump
class preprocess_sentences():
def __init__(self):
pass
def fit(self, X, y=None):
print('PREPROCESSING')
return self
def transform(self, X):
# X = train['tokens'], y =
sentences = X.apply(lambda x: x.tolist()).tolist()
print('--> Preprocessing complete \n', flush=True)
return sentences
EMBEDDING_DIM = 500
PAD_VALUE= -1
MAX_LENGTH = 376
BATCH_SIZE = 16
class Word2VecTransformer():
def __init__(self, vector_size = EMBEDDING_DIM, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
self.model = None
self.vector_size = vector_size
self.window = window
self.min_count = min_count
self.workers = workers
self.embedding_dim = embedding_dim
def fit(self, X, y):
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
print('WORD2VEC:', flush=True)
# This fits the word2vec model
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
, min_count=self.min_count, workers=self.workers)
print('--> Word2Vec Fitted', flush=True)
return self
def transform(self, X):
# This bit should transform the sentences
embedded_sentences = []
for sentence in X:
sentence_vectors = []
for word in sentence:
if word in self.model.wv:
vec = self.model.wv[word]
else:
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
sentence_vectors.append(vec)
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
print('--> Embeddings Complete \n', flush=True)
return embedded_sentences
class Word2VecTransformer_CRF():
def __init__(self, vector_size = EMBEDDING_DIM, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
self.model = None
self.vector_size = vector_size
self.window = window
self.min_count = min_count
self.workers = workers
self.embedding_dim = embedding_dim
def fit(self, X, y):
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
print('WORD2VEC:', flush=True)
# This fits the word2vec model
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
, min_count=self.min_count, workers=self.workers)
print('--> Word2Vec Fitted', flush=True)
return self
def transform(self, X):
# This bit should transform the sentences
embedded_sentences = []
for sentence in X:
sentence_vectors = []
for word in sentence:
features = {
'bias': 1.0,
'word.lower()': word.lower(),
'word[-3:]': word[-3:],
'word[-2:]': word[-2:],
'word.isupper()': word.isupper(),
'word.istitle()': word.istitle(),
'word.isdigit()': word.isdigit(),
}
if word in self.model.wv:
vec = self.model.wv[word]
else:
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
# https://stackoverflow.com/questions/58736548/how-to-use-word-embedding-as-features-for-crf-sklearn-crfsuite-model-training
for index in range(len(vec)):
features[f"embedding_{index}"] = vec[index]
sentence_vectors.append(features)
embedded_sentences.append(sentence_vectors)
print('--> Embeddings Complete \n', flush=True)
return embedded_sentences
class tfidfTransformer(BaseEstimator, TransformerMixin):
def __init__(self):
self.model = None
self.embedding_dim = None
self.idf = None
self.vocab_size = None
self.vocab = None
def fit(self, X, y = None):
print('TFIDF:', flush=True)
joined_sentences = [' '.join(tokens) for tokens in X]
self.model = TfidfVectorizer()
self.model.fit(joined_sentences)
self.vocab = self.model.vocabulary_
self.idf = self.model.idf_
self.vocab_size = len(self.vocab)
self.embedding_dim = self.vocab_size
print('--> TFIDF Fitted', flush=True)
return self
def transform(self, X):
embedded = []
for sentence in X:
sent_vecs = []
token_counts = {}
for word in sentence:
token_counts[word] = token_counts.get(word, 0) + 1
sent_len = len(sentence)
for word in sentence:
vec = np.zeros(self.vocab_size)
if word in self.vocab:
tf = token_counts[word] / sent_len
token_idx = self.vocab[word]
vec[token_idx] = tf * self.idf[token_idx]
sent_vecs.append(vec)
embedded.append(torch.tensor(sent_vecs, dtype=torch.float32))
print('--> Embeddings Complete \n', flush=True)
return embedded
class GloveTransformer(BaseEstimator, TransformerMixin):
def __init__(self):
self.model = None
self.embedding_dim = 300
def fit(self, X, y=None):
print('GLOVE', flush = True)
self.model = api.load('glove-wiki-gigaword-300')
print('--> Glove Downloaded', flush=True)
return self
def transform(self, X):
# This bit should transform the sentences
print('--> Beginning embeddings', flush=True)
embedded_sentences = []
for sentence in X:
sentence_vectors = []
for word in sentence:
if word in self.model:
vec = self.model[word]
else:
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
sentence_vectors.append(vec)
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
print('--> Embeddings Complete \n', flush=True)
return embedded_sentences
class Bio2VecTransformer():
def __init__(self, vector_size = 200, window = 5, min_count = 1, workers = 1, embedding_dim=200):
self.model = None
self.vector_size = vector_size
self.window = window
self.min_count = min_count
self.workers = workers
self.embedding_dim = embedding_dim
def fit(self, X, y):
print('BIO2VEC:', flush=True)
# https://stackoverflow.com/questions/58055415/how-to-load-bio2vec-in-gensim
self.model = Bio2VecModel
print('--> BIO2VEC Fitted', flush=True)
return self
def transform(self, X):
# This bit should transform the sentences
embedded_sentences = []
for sentence in X:
sentence_vectors = []
for word in sentence:
if word in self.model:
vec = self.model[word]
else:
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
sentence_vectors.append(vec)
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
print('--> Embeddings Complete \n', flush=True)
return embedded_sentences
class BiLSTM_NER(nn.Module):
def __init__(self,input_dim, hidden_dim, tagset_size):
super(BiLSTM_NER, self).__init__()
# Embedding layer
#Freeze= false means that it will fine tune
#self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze = False, padding_idx=-1)
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_dim*2, tagset_size)
def forward(self, sentences):
#embeds = self.embedding(sentences)
lstm_out, _ = self.lstm(sentences)
tag_scores = self.fc(lstm_out)
return tag_scores
def pad(batch):
# batch is a list of (X, y) pairs
X_batch, y_batch = zip(*batch)
# Convert to tensors
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in X_batch]
y_batch = [torch.tensor(seq, dtype=torch.long) for seq in y_batch]
# Pad sequences
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
y_padded = pad_sequence(y_batch, batch_first=True, padding_value=PAD_VALUE)
return X_padded, y_padded
def pred_pad(batch):
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in batch]
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
return X_padded
class Ner_Dataset(Dataset):
def __init__(self, X, y):
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
class LSTM(BaseEstimator, ClassifierMixin):
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.epochs = epochs
self.learning_rate = learning_rate
self.tag2idx = tag2idx
def fit(self, embedded, encoded_tags):
#print('LSTM started:', flush=True)
data = Ner_Dataset(embedded, encoded_tags)
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
self.model = self.train_LSTM(train_loader)
#print('--> Epochs: ', self.epochs, flush=True)
#print('--> Learning Rate: ', self.learning_rate)
return self
def predict(self, X):
# Switch to evaluation mode
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
self.model.eval()
predictions = []
# Iterate through test data
with torch.no_grad():
for X_batch in test_loader:
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
tag_scores = self.model(X_batch)
_, predicted_tags = torch.max(tag_scores, dim=2)
flattened_pred = predicted_tags.view(-1)
predictions.append(list(flattened_pred.cpu().numpy()))
#print('before concat',predictions)
#predictions = np.concatenate(predictions)
#print('after concat',predictions)
tag_encoder = LabelEncoder()
tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])
str_pred = []
for sentence in predictions:
str_sentence = tag_encoder.inverse_transform(sentence)
str_pred.append(list(str_sentence))
return str_pred
def train_LSTM(self, train_loader):
input_dim = self.embedding_dim
# Instantiate the lstm_model
lstm_model = BiLSTM_NER(input_dim, hidden_dim=self.hidden_dim, tagset_size=len(self.tag2idx))
lstm_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# Loss function and optimizer
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
optimizer = optim.Adam(lstm_model.parameters(), lr=self.learning_rate)
#print('--> Training LSTM')
# Training loop
for epoch in range(self.epochs):
total_loss = 0
total_correct = 0
total_words = 0
lstm_model.train() # Set model to training mode
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# Zero gradients
optimizer.zero_grad()
# Forward pass
tag_scores = lstm_model(X_batch)
# Reshape and compute loss (ignore padded values)
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
# Backward pass and optimization
loss.backward()
optimizer.step()
total_loss += loss.item()
# Compute accuracy for this batch
# Get the predicted tags (index of max score)
_, predicted_tags = torch.max(tag_scores, dim=2)
# Flatten the tensors to compare word-by-word
flattened_pred = predicted_tags.view(-1)
flattened_true = y_batch.view(-1)
# Exclude padding tokens from the accuracy calculation
mask = flattened_true != PAD_VALUE
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
# Count the total words in the batch (ignoring padding)
total_words_batch = mask.sum().item()
# Update total correct and total words
total_correct += correct
total_words += total_words_batch
avg_loss = total_loss / len(train_loader)
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
#print(f' ==> Epoch {epoch + 1}/{self.epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
return lstm_model
# Define the FeedForward NN Model
class FeedForwardNN_NER(nn.Module):
def __init__(self, embedding_dim, hidden_dim, tagset_size):
super(FeedForwardNN_NER, self).__init__()
self.fc1 = nn.Linear(embedding_dim, hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, tagset_size)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
logits = self.fc2(x)
return logits
class FeedforwardNN(BaseEstimator, ClassifierMixin):
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.epochs = epochs
self.learning_rate = learning_rate
self.tag2idx = tag2idx
def fit(self, embedded, encoded_tags):
print('Feed Forward NN: ', flush=True)
data = Ner_Dataset(embedded, encoded_tags)
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
self.model = self.train_FF(train_loader)
print('--> Feed Forward trained', flush=True)
return self
def predict(self, X):
# Switch to evaluation mode
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
self.model.eval()
predictions = []
# Iterate through test data
with torch.no_grad():
for X_batch in test_loader:
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
tag_scores = self.model(X_batch)
_, predicted_tags = torch.max(tag_scores, dim=2)
# Flatten the tensors to compare word-by-word
flattened_pred = predicted_tags.view(-1)
predictions.append(flattened_pred.cpu().numpy())
tag_encoder = LabelEncoder()
tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])
str_pred = []
for sentence in predictions:
str_sentence = tag_encoder.inverse_transform(sentence)
str_pred.append(list(str_sentence))
return str_pred
def train_FF(self, train_loader):
# Instantiate the lstm_model
ff_model = FeedForwardNN_NER(self.embedding_dim, hidden_dim=self.hidden_dim, tagset_size=len(self.tag2idx))
ff_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# Loss function and optimizer
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
optimizer = optim.Adam(ff_model.parameters(), lr=self.learning_rate)
print('--> Training FF')
# Training loop
for epoch in range(self.epochs):
total_loss = 0
total_correct = 0
total_words = 0
ff_model.train() # Set model to training mode
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# Zero gradients
optimizer.zero_grad()
# Forward pass
tag_scores = ff_model(X_batch)
# Reshape and compute loss (ignore padded values)
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
# Backward pass and optimization
loss.backward()
optimizer.step()
total_loss += loss.item()
# Compute accuracy for this batch
# Get the predicted tags (index of max score)
_, predicted_tags = torch.max(tag_scores, dim=2)
# Flatten the tensors to compare word-by-word
flattened_pred = predicted_tags.view(-1)
flattened_true = y_batch.view(-1)
# Exclude padding tokens from the accuracy calculation
mask = flattened_true != PAD_VALUE
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
# Count the total words in the batch (ignoring padding)
total_words_batch = mask.sum().item()
# Update total correct and total words
total_correct += correct
total_words += total_words_batch
avg_loss = total_loss / len(train_loader)
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
print(f' ==> Epoch {epoch + 1}/{self.epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
return ff_model
crf = sklearn_crfsuite.CRF(
algorithm='lbfgs',
c1=0.1,
c2=0.1,
max_iterations=100,
all_possible_transitions=True)
|