File size: 4,002 Bytes
294ad84
 
 
 
 
 
 
 
 
 
 
 
679d911
294ad84
 
 
679d911
294ad84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff19fba
294ad84
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# %%
import os, json, itertools, bisect, gc
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import transformers
import torch
from accelerate import Accelerator
import accelerate
import time
import os
import gradio as gr
import requests
import random
# from dotenv import load_dotenv
import googletrans
translator = googletrans.Translator()

# load_dotenv()
model = None
tokenizer = None
generator = None

os.environ["CUDA_VISIBLE_DEVICES"]="1"

def load_model(model_name, eight_bit=0, device_map="auto"):
    global model, tokenizer, generator
    print("Loading "+model_name+"...")

    if device_map == "zero":
        device_map = "balanced_low_0"

    # config
    gpu_count = torch.cuda.device_count()
    print('gpu_count', gpu_count)

    print(model_name)
    tokenizer = transformers.LLaMATokenizer.from_pretrained(model_name)
    model = transformers.LLaMAForCausalLM.from_pretrained(
        model_name,
        #device_map=device_map,
        #device_map="auto",
        torch_dtype=torch.float16,
        #max_memory = {0: "14GB", 1: "14GB", 2: "14GB", 3: "14GB",4: "14GB",5: "14GB",6: "14GB",7: "14GB"},
        #load_in_8bit=eight_bit,
        #from_tf=True,
        low_cpu_mem_usage=True,
        load_in_8bit=False,
        cache_dir="cache"
    ).cuda()
    generator = model.generate

# chat doctor
def chatdoctor(input, state):   
    # print('input',input)
    # history = history or []
    print('state',state)
    
    invitation = "ChatDoctor: "
    human_invitation = "Patient: "
    fulltext = "If you are a doctor, please answer the medical questions based on the patient's description. \n\n"
    
    for i in range(len(state)):
        if i % 2:
            fulltext += human_invitation + state[i] + "\n\n"
        else:
            fulltext += invitation + state[i] + "\n\n"
    fulltext += human_invitation + input + "\n\n"
    fulltext += invitation
    print('fulltext: ',fulltext)

    generated_text = ""
    gen_in = tokenizer(fulltext, return_tensors="pt").input_ids.cuda()
    in_tokens = len(gen_in)
    print('len token',in_tokens)
    with torch.no_grad():
            generated_ids = generator(
                gen_in,
                max_new_tokens=200,
                use_cache=True,
                pad_token_id=tokenizer.eos_token_id,
                num_return_sequences=1,
                do_sample=True,
                repetition_penalty=1.1, # 1.0 means 'off'. unfortunately if we penalize it it will not output Sphynx:
                temperature=0.5, # default: 1.0
                top_k = 50, # default: 50
                top_p = 1.0, # default: 1.0
                early_stopping=True,
            )
            generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # for some reason, batch_decode returns an array of one element?
            text_without_prompt = generated_text[len(fulltext):]
    response = text_without_prompt
    response = response.split(human_invitation)[0]
    response.strip()
    print(invitation + response)
    print("")
    return response


def predict(input, chatbot, state):
    print('predict state: ', state)
    en_input = translator.translate(input, src='ko', dest='en').text
    response = chatdoctor(en_input, state)
    ko_response = translator.translate(response, src='en', dest='ko').text
    state.append(response)
    chatbot.append((input, ko_response))
    return chatbot, state

load_model("zl111/ChatDoctor")

with gr.Blocks() as demo:
    gr.Markdown("""<h1><center>μ±— λ‹₯ν„°μž…λ‹ˆλ‹€. μ–΄λ””κ°€ λΆˆνŽΈν•˜μ‹ κ°€μš”?</center></h1>
    """)
    chatbot = gr.Chatbot()
    state = gr.State([])
    with gr.Row():
        txt = gr.Textbox(show_label=False, placeholder="여기에 μ§ˆλ¬Έμ„ μ“°κ³  μ—”ν„°").style(container=False)
    clear = gr.Button("상담 μƒˆλ‘œ μ‹œμž‘")
    txt.submit(predict, inputs=[txt, chatbot, state], outputs=[chatbot, state]
    )
    clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(share=True)