File size: 1,832 Bytes
c964d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import torch.nn as nn
import torch.nn.functional as F


class MarginRankLoss(nn.Module):
    def __init__(self):
        super(MarginRankLoss, self).__init__()
        self.loss = 0.0

    def forward(self, img_list, margin=0):
        length = len(img_list)
        self.loss = 0.0
        B, C, H, W = img_list[0].shape
        for i in range(length - 1):
            for j in range(i + 1, length):
                self.loss = self.loss + torch.sum(F.relu(img_list[j].sum(-1).sum(-1).sum(-1) - img_list[i].sum(-1).sum(-1).sum(-1) + margin))

        self.loss = self.loss / (B*length*(length-1)/2)
        return self.loss


class RankLoss(nn.Module):
    def __init__(self):
        super(RankLoss, self).__init__()
        self.countloss_criterion = nn.MSELoss(reduction='sum')
        self.rankloss_criterion = MarginRankLoss()
        self.rankloss = 0.0
        self.losses = {}

    def forward(self, unlabeled_results):
        self.rankloss = 0.0
        self.losses = {}
  

        if unlabeled_results is None:
            self.rankloss = 0.0
        elif isinstance(unlabeled_results, tuple) and len(unlabeled_results) > 0:
            self.rankloss = self.rankloss_criterion(unlabeled_results)
        elif isinstance(unlabeled_results, list) and len(unlabeled_results) > 0:
            count = 0
            for i in range(len(unlabeled_results)):
                if isinstance(unlabeled_results[i], tuple) and len(unlabeled_results[i]) > 0:
                    temploss = self.rankloss_criterion(unlabeled_results[i])
                    self.losses.update({'unlabel_{}_loss'.format(str(i+1)): temploss})
                    self.rankloss += temploss

                    count += 1
            if count > 0:
                self.rankloss = self.rankloss / count
        
        return self.rankloss