Spaces:
Running
Running
File size: 2,693 Bytes
08e5ef1 7edda8b 2bede7c 4c4c78d 5fd1a0a 7edda8b 2bede7c 75b770e 08e5ef1 1fba392 925d15e 08e5ef1 2bede7c d301b97 925d15e 7686e09 d301b97 7c36326 d301b97 5696fee d301b97 9781999 d301b97 9781999 5696fee 9781999 d301b97 9781999 00dc59f 2bede7c 00dc59f 098f871 ec000c3 3ad22ce 4c4c78d 3ad22ce 4c4c78d 098f871 3ad22ce 098f871 4c4c78d 3ad22ce 4c4c78d 3ad22ce 098f871 c360795 3ad22ce 2bede7c 925d15e 098f871 925d15e b31944c 925d15e 2bede7c c360795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import os
import shutil
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
import mlx_lm import convert
HF_TOKEN = os.environ.get("HF_TOKEN")
def process_model(model_id, q_method,):
if oauth_token.token is None:
raise ValueError("You must be logged in to use GGUF-my-repo")
model_name = model_id.split('/')[-1]
username = whoami(oauth_token.token)["name"]
try:
upload_repo = username + "/" + model_name + "-mlx"
convert(model_id, quantize=True, upload_repo=upload_repo)
return (
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree("mlx_model", ignore_errors=True)
print("Folder cleaned up successfully!")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use MLX-my-repo.")
gr.LoginButton(min_width=250)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
q_method = gr.Dropdown(
["Q4", "Q8"],
label="Quantization Method",
info="MLX quantization type",
value="Q4",
filterable=False,
visible=True
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own MLX Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.",
api_name=False
)
def restart_space():
HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |