Spaces:
Runtime error
Runtime error
File size: 4,598 Bytes
458942a 8f895f2 9b818c8 8f895f2 9b818c8 73994b7 8f895f2 9b818c8 8f895f2 cbdef5e 8f895f2 9b818c8 8f895f2 cbdef5e 8f895f2 9b818c8 8f895f2 73994b7 8f895f2 cbdef5e 8f895f2 fcfd917 8f895f2 73994b7 8f895f2 b777cd0 8f895f2 b777cd0 73994b7 8f895f2 458942a 73994b7 458942a 73994b7 458942a b0e8ca7 458942a 8f895f2 458942a 73994b7 b0e8ca7 8f895f2 cbdef5e fcfd917 8f895f2 b0e8ca7 8f895f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import arxiv
import pandas as pd
import numpy as np
import data_cleaning as clean
from dataclasses import dataclass, astuple, asdict
class ArXivData:
"""A class for storing the metadata of a collection of arXiv papers."""
def __init__(self) -> None:
self._returned_metadata = None
self.metadata = None
self.arxiv_subjects = None
self.doc_strings = "title and abstract"
self.embeddings = None
def load_from_feather(self, path_to_dataset):
"""Loads metadata from a saved feather file.
Args:
path_to_dataset: path to the feather file containing the dataset.
"""
self._returned_metadata = pd.read_feather(path_to_dataset)
self.metadata = self._returned_metadata
self.arxiv_subjects = clean.OHE_arxiv_subjects(self.metadata)
def load_from_query(self, query, max_results, offset=0):
"""Loads instance with data returned from an ArXiv API query.
Args:
query: query string used to call the API
max_results: maximum number of results from the API call to return
offset: number of results to skip over initially. Defaults to 0.
"""
self._returned_metadata = query_to_df(
query=query, max_results=max_results, offset=offset
)
self.metadata = clean.split_categories(self._returned_metadata)
self.arxiv_subjects = clean.OHE_arxiv_subjects(self.metadata)
def save_as_feather(self, path_to_dataset):
"""Saves a dataset as a feather file.
Args:
path_to_dataset: directory to save the dataset
Raises:
Exception: Raises exception if there is no data to be saved.
"""
if self.metadata.empty:
raise Exception(
"No data stored. Run load_from_query or load_from_feather to retrieve data."
)
self.metadata.to_feather(path_to_dataset)
def query_to_df(query, max_results, offset):
"""Returns the results of an arxiv API query in a pandas dataframe.
Args:
query: string defining an arxiv query formatted according to
https://info.arxiv.org/help/api/user-manual.html#51-details-of-query-construction
max_results: positive integer specifying the maximum number of results returned.
chunksize:
Returns:
pandas dataframe with one column for indivial piece of metadata of a returned result.
To see a list of these columns and their descriptions, see the documentation for the Results class of the arxiv package here:
http://lukasschwab.me/arxiv.py/index.html#Result
The 'links' column is dropped and the authors column is a list of each author's name as a string.
The categories column is also a list of all tags appearing.
"""
client = arxiv.Client(page_size=2000, num_retries=10)
search = arxiv.Search(
query=query,
max_results=max_results,
sort_by=arxiv.SortCriterion.LastUpdatedDate,
)
columns = ["title", "summary", "categories", "id"]
index = range(offset, max_results)
results = client.results(search, offset=offset)
metadata_generator = (
(
result.title,
result.summary,
result.categories,
result.entry_id.split("/")[-1],
)
for result in results
)
returned_metadata = pd.DataFrame(metadata_generator, columns=columns, index=index)
returned_metadata = returned_metadata.rename(columns={"summary": "abstract"})
return returned_metadata
# def format_query(author="", title="", cat="", abstract=""):
# """Returns a formatted arxiv query string to handle simple queries of at most one instance each of these fields. To leave a field unspecified,
# leave the corresponding argument blank.
# e.g. format_query(cat='math.AP') will return the string used to pull all articles with the subject tag 'PDEs'.
# Args:
# author: string to search for in the author field.
# title: string to search for in the title field.
# cat: A valid arxiv subject tag. See the full list of these at:
# https://arxiv.org/category_taxonomy
# abstract: string to search for in the abstract field.
# Returns:
# properly formatted query string to return all results simultaneously matching all specified fields.
# """
# tags = [f"au:{author}", f"ti:{title}", f"cat:{cat}", f"abs:{abstract}"]
# query = " AND ".join([tag for tag in tags if not tag.endswith(":")])
# return query
|