File size: 5,834 Bytes
31ca7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import sys
import json
import glob
import argparse
from easydict import EasyDict as edict

import torch
import torch.multiprocessing as mp
import numpy as np
import random

from trellis import models, datasets, trainers
from trellis.utils.dist_utils import setup_dist


def find_ckpt(cfg):
    # Load checkpoint
    cfg['load_ckpt'] = None
    if cfg.load_dir != '':
        if cfg.ckpt == 'latest':
            files = glob.glob(os.path.join(cfg.load_dir, 'ckpts', 'misc_*.pt'))
            if len(files) != 0:
                cfg.load_ckpt = max([
                    int(os.path.basename(f).split('step')[-1].split('.')[0])
                    for f in files
                ])
        elif cfg.ckpt == 'none':
            cfg.load_ckpt = None
        else:
            cfg.load_ckpt = int(cfg.ckpt)
    return cfg


def setup_rng(rank):
    torch.manual_seed(rank)
    torch.cuda.manual_seed_all(rank)
    np.random.seed(rank)
    random.seed(rank)


def get_model_summary(model):
    model_summary = 'Parameters:\n'
    model_summary += '=' * 128 + '\n'
    model_summary += f'{"Name":<{72}}{"Shape":<{32}}{"Type":<{16}}{"Grad"}\n'
    num_params = 0
    num_trainable_params = 0
    for name, param in model.named_parameters():
        model_summary += f'{name:<{72}}{str(param.shape):<{32}}{str(param.dtype):<{16}}{param.requires_grad}\n'
        num_params += param.numel()
        if param.requires_grad:
            num_trainable_params += param.numel()
    model_summary += '\n'
    model_summary += f'Number of parameters: {num_params}\n'
    model_summary += f'Number of trainable parameters: {num_trainable_params}\n'
    return model_summary


def main(local_rank, cfg):
    # Set up distributed training
    rank = cfg.node_rank * cfg.num_gpus + local_rank
    world_size = cfg.num_nodes * cfg.num_gpus
    if world_size > 1:
        setup_dist(rank, local_rank, world_size, cfg.master_addr, cfg.master_port)

    # Seed rngs
    setup_rng(rank)

    # Load data
    dataset = getattr(datasets, cfg.dataset.name)(cfg.data_dir, **cfg.dataset.args)

    # Build model
    model_dict = {
        name: getattr(models, model.name)(**model.args).cuda()
        for name, model in cfg.models.items()
    }

    # Model summary
    if rank == 0:
        for name, backbone in model_dict.items():
            model_summary = get_model_summary(backbone)
            print(f'\n\nBackbone: {name}\n' + model_summary)
            with open(os.path.join(cfg.output_dir, f'{name}_model_summary.txt'), 'w') as fp:
                print(model_summary, file=fp)

    # Build trainer
    trainer = getattr(trainers, cfg.trainer.name)(model_dict, dataset, **cfg.trainer.args, output_dir=cfg.output_dir, load_dir=cfg.load_dir, step=cfg.load_ckpt)

    # Train
    if not cfg.tryrun:
        if cfg.profile:
            trainer.profile()
        else:
            trainer.run()


if __name__ == '__main__':
    # Arguments and config
    parser = argparse.ArgumentParser()
    ## config
    parser.add_argument('--config', type=str, required=True, help='Experiment config file')
    ## io and resume
    parser.add_argument('--output_dir', type=str, required=True, help='Output directory')
    parser.add_argument('--load_dir', type=str, default='', help='Load directory, default to output_dir')
    parser.add_argument('--ckpt', type=str, default='latest', help='Checkpoint step to resume training, default to latest')
    parser.add_argument('--data_dir', type=str, default='./data/', help='Data directory')
    parser.add_argument('--auto_retry', type=int, default=3, help='Number of retries on error')
    ## dubug
    parser.add_argument('--tryrun', action='store_true', help='Try run without training')
    parser.add_argument('--profile', action='store_true', help='Profile training')
    ## multi-node and multi-gpu
    parser.add_argument('--num_nodes', type=int, default=1, help='Number of nodes')
    parser.add_argument('--node_rank', type=int, default=0, help='Node rank')
    parser.add_argument('--num_gpus', type=int, default=-1, help='Number of GPUs per node, default to all')
    parser.add_argument('--master_addr', type=str, default='localhost', help='Master address for distributed training')
    parser.add_argument('--master_port', type=str, default='12345', help='Port for distributed training')
    opt = parser.parse_args()
    opt.load_dir = opt.load_dir if opt.load_dir != '' else opt.output_dir
    opt.num_gpus = torch.cuda.device_count() if opt.num_gpus == -1 else opt.num_gpus
    ## Load config
    config = json.load(open(opt.config, 'r'))
    ## Combine arguments and config
    cfg = edict()
    cfg.update(opt.__dict__)
    cfg.update(config)
    print('\n\nConfig:')
    print('=' * 80)
    print(json.dumps(cfg.__dict__, indent=4))

    # Prepare output directory
    if cfg.node_rank == 0:
        os.makedirs(cfg.output_dir, exist_ok=True)
        ## Save command and config
        with open(os.path.join(cfg.output_dir, 'command.txt'), 'w') as fp:
            print(' '.join(['python'] + sys.argv), file=fp)
        with open(os.path.join(cfg.output_dir, 'config.json'), 'w') as fp:
            json.dump(config, fp, indent=4)

    # Run
    if cfg.auto_retry == 0:
        cfg = find_ckpt(cfg)
        if cfg.num_gpus > 1:
            mp.spawn(main, args=(cfg,), nprocs=cfg.num_gpus, join=True)
        else:
            main(0, cfg)
    else:
        for rty in range(cfg.auto_retry):
            try:
                cfg = find_ckpt(cfg)
                if cfg.num_gpus > 1:
                    mp.spawn(main, args=(cfg,), nprocs=cfg.num_gpus, join=True)
                else:
                    main(0, cfg)
                break
            except Exception as e:
                print(f'Error: {e}')
                print(f'Retrying ({rty + 1}/{cfg.auto_retry})...')