Spaces:
Paused
Paused
File size: 15,724 Bytes
ba6030d 373dfeb fc17cd4 ba6030d 373dfeb ba6030d f7e5eef 373dfeb bbfe612 ba6030d 2b919a2 78c51c6 ba6030d fc17cd4 7e9582a fc17cd4 7e9582a fc17cd4 05ca648 7e9582a 05ca648 ba6030d 5e4ec7d ba6030d 7e9582a 5e4ec7d ba6030d a66d9b2 ba6030d a66d9b2 ba6030d a66d9b2 ba6030d 6075314 ba6030d 6075314 ba6030d e815731 ba6030d 6075314 ba6030d 6075314 ba6030d 6075314 ba6030d 6075314 380a2f5 6075314 380a2f5 6075314 b43b73b 6075314 ba6030d f7e5eef ba6030d 2b919a2 ba6030d b43b73b ba6030d f892546 ba6030d f7e5eef ba6030d 358b5c8 ba6030d f7e5eef ba6030d 9822f81 ba6030d c385bf7 79883c8 ba6030d 29f310f ba6030d 373dfeb f7e5eef 79883c8 373dfeb f7e5eef 373dfeb f7e5eef e815731 f7e5eef 7bf890c ba6030d f7e5eef ba6030d 76f067b ba6030d 358b5c8 ba6030d a173027 ba6030d a173027 ba6030d db81026 acc384c ba6030d 4858507 ba6030d 598bf51 ba6030d 598bf51 ba6030d f7e5eef 58cfbcb f7e5eef ba6030d 58cfbcb 598bf51 acc384c 66a64db fc17cd4 ba6030d fc17cd4 ba6030d 72e66d3 db81026 7c6a09f ba6030d d89fc74 8a5e743 587842d 8a5e743 d9adf9e 5f0417a 8a5e743 ba6030d 8a5e743 1d5f0b3 8a5e743 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import os
import re
import sys
import time
import random
import yaml
import subprocess
from io import StringIO
import runpod
import shutil
import requests
import gradio as gr
import pandas as pd
from jinja2 import Template
from huggingface_hub import ModelCard, ModelCardData, HfApi, repo_info
from huggingface_hub.utils import RepositoryNotFoundError
# Set environment variables
HF_TOKEN = os.environ.get("HF_TOKEN")
runpod.api_key = os.environ.get("RUNPOD_TOKEN")
# Parameters
USERNAME = 'automerger'
N_ROWS = 15
WAIT_TIME = 10800
# Logger from https://github.com/gradio-app/gradio/issues/2362
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
def create_dataset() -> bool:
"""
Use Scrape Open LLM Leaderboard to create a CSV dataset.
"""
command = ["python3", "scrape-open-llm-leaderboard/main.py", "-csv"]
try:
result = subprocess.run(command, check=True, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, text=True)
print(f"scrape-open-llm-leaderboard: {result.stdout}")
return True
except subprocess.CalledProcessError as e:
print(f"scrape-open-llm-leaderboard: {e.stderr}")
return False
def merge_models() -> None:
"""
Use mergekit to create a merge.
"""
command = ["mergekit-yaml", "config.yaml", "/data/merge", "--copy-tokenizer", "--transformers_cache", "/data"]
with open("output.log", "a") as log_file:
try:
result = subprocess.run(command, check=True, stdout=log_file,
stderr=log_file, text=True)
print(f"mergekit: {result.stdout}")
except subprocess.CalledProcessError as e:
print(f"Error: mergekit {command}: {e.stderr}")
def make_df(file_path: str, n_rows: int) -> pd.DataFrame:
"""
Create a filtered dataset from the Open LLM Leaderboard.
"""
columns = ["Available on the hub", "Model sha", "T", "Type", "Precision",
"Architecture", "Weight type", "Hub ❤️", "Flagged", "MoE"]
ds = pd.read_csv("open-llm-leaderboard.csv", encoding='utf-8')
df = (
ds[
(ds["#Params (B)"] == 8)
& (ds["Architecture"] == "LlamaForCausalLM")
& (ds["Available on the hub"] == True)
& (ds["Flagged"] == True)
& (~ds["Model"].str.lower().str.contains("yi"))
& (~ds["Model"].str.lower().str.contains("9b"))
& (~ds["Model"].str.lower().str.contains("8xqmff94/slm"))
& (ds["MoE"] == True)
& (ds["Weight type"] == "Original")
]
.drop(columns=columns)
.drop_duplicates(subset=["Model"])
.sort_values(by="MMLU", ascending=False)
.iloc[:n_rows]
)
return df
def repo_exists(repo_id: str) -> bool:
try:
repo_info(repo_id)
return True
except RepositoryNotFoundError:
return False
def get_name(models: list[pd.Series], username: str, version=0) -> str:
model_name = models[0]["Model"].split("/")[-1].split("-")[0].capitalize() \
+ models[1]["Model"].split("/")[-1].split("-")[0].capitalize() \
+ "-8B"
if version > 0:
model_name = model_name.split("-")[0] + f"-v{version}-8B"
if repo_exists(f"{username}/{model_name}"):
get_name(models, username, version+1)
return model_name
def get_license(models: list[pd.Series]) -> str:
license1 = models[0]["Hub License"]
license2 = models[1]["Hub License"]
license = "cc-by-nc-4.0"
if license1 == "cc-by-nc-4.0" or license2 == "cc-by-nc-4.0":
license = "cc-by-nc-4.0"
elif license1 == "apache-2.0" or license2 == "apache-2.0":
license = "apache-2.0"
elif license1 == "MIT" and license2 == "MIT":
license = "MIT"
return license
def create_config(models: list[pd.Series]) -> str:
slerp_config = f"""
slices:
- sources:
- model: {models[0]["Model"]}
layer_range: [0, 32]
- model: {models[1]["Model"]}
layer_range: [0, 32]
merge_method: slerp
base_model: {models[0]["Model"]}
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
random_seed: 0
"""
dare_config = f"""
models:
- model: {models[0]["Model"]}
# No parameters necessary for base model
- model: {models[1]["Model"]}
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: {models[0]["Model"]}
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
"""
stock_config = f"""
models:
- model: meta-llama/Meta-Llama-3-8B
- model: {models[0]["Model"]}
- model: {models[1]["Model"]}
merge_method: model_stock
base_model: meta-llama/Meta-Llama-3-8B
dtype: bfloat16
"""
yaml_config = random.choices([slerp_config, dare_config, stock_config], weights=[0.3, 0.6, 0.1], k=1)[0]
with open('config.yaml', 'w', encoding="utf-8") as f:
f.write(yaml_config)
return yaml_config
def create_model_card(yaml_config: str, model_name: str, username: str, license: str) -> None:
template_text = """
---
license: {{ license }}
base_model:
{%- for model in models %}
- {{ model }}
{%- endfor %}
tags:
- merge
- mergekit
- lazymergekit
- automerger
---
# {{ model_name }}
{{ model_name }} is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration.
{%- for model in models %}
* [{{ model }}](https://huggingface.co/{{ model }})
{%- endfor %}
## 🧩 Configuration
```yaml
{{- yaml_config -}}
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "{{ username }}/{{ model_name }}"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
"""
# Create a Jinja template object
jinja_template = Template(template_text.strip())
# Get list of models from config
data = yaml.safe_load(yaml_config)
if "models" in data:
models = [data["models"][i]["model"] for i in range(len(data["models"])) if "parameters" in data["models"][i]]
elif "parameters" in data:
models = [data["slices"][0]["sources"][i]["model"] for i in range(len(data["slices"][0]["sources"]))]
elif "slices" in data:
models = [data["slices"][i]["sources"][0]["model"] for i in range(len(data["slices"]))]
else:
raise Exception("No models or slices found in yaml config")
# Fill the template
content = jinja_template.render(
model_name=model_name,
models=models,
yaml_config=yaml_config,
username=username,
license=license
)
# Save the model card
card = ModelCard(content)
card.save('/data/merge/README.md')
def upload_model(api: HfApi, username: str, model_name: str) -> None:
"""
Upload merged model to the Hugging Face Hub.
"""
api.create_repo(
repo_id=f"{username}/{model_name}",
repo_type="model",
exist_ok=True,
)
api.upload_folder(
repo_id=f"{username}/{model_name}",
folder_path="/data/merge",
)
def create_pod(model_name: str, username: str, n=10, wait_seconds=10):
"""
Create a RunPod instance to run the evaluation.
"""
for attempt in range(n):
try:
pod = runpod.create_pod(
name=f"Automerge {model_name} on Nous",
image_name="runpod/pytorch:2.0.1-py3.10-cuda11.8.0-devel-ubuntu22.04",
gpu_type_id="NVIDIA GeForce RTX 3090",
cloud_type="COMMUNITY",
gpu_count=1,
volume_in_gb=0,
container_disk_in_gb=50,
template_id="au6nz6emhk",
env={
"BENCHMARK": "nous",
"MODEL_ID": f"{username}/{model_name}",
"REPO": "https://github.com/mlabonne/llm-autoeval.git",
"TRUST_REMOTE_CODE": False,
"PRIVATE_GIST": False,
"YALL_GIST_ID": "56ebbd012d942a6b749db5243de5740f",
"DEBUG": False,
"GITHUB_API_TOKEN": os.environ["GITHUB_TOKEN"],
}
)
print("Evaluation started.")
return pod
except Exception as e:
print(f"Attempt {attempt + 1} failed with error: {e}")
if attempt < n - 1:
print(f"Waiting {wait_seconds} seconds before retrying...")
time.sleep(wait_seconds)
else:
print("All attempts failed. Giving up.")
raise
def download_leaderboard():
"""
Download the gist that contains the leaderboard.
"""
url = "https://gist.githubusercontent.com/automerger/56ebbd012d942a6b749db5243de5740f/raw"
file_path = "leaderboard.txt"
response = requests.get(url)
return response.content.decode('utf-8')
def convert_markdown_table_to_dataframe(md_content):
"""
Converts markdown table to Pandas DataFrame.
"""
# Remove leading and trailing | characters
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
# Create DataFrame from cleaned content
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
# Remove the first row after the header
df = df.drop(0, axis=0)
# Strip whitespace from column names
df.columns = df.columns.str.strip()
return df
def get_dataframe():
"""
Wrapper to update the Gradio dataframe.
"""
content = download_leaderboard()
df = convert_markdown_table_to_dataframe(content)
return df
def clear_data():
"""
Clear data so the Space doesn't crash...
"""
dir_path = "/data"
try:
with os.scandir(dir_path) as entries:
for entry in entries:
if entry.is_file():
os.unlink(entry.path)
print("All files deleted successfully.")
except OSError:
print("Error occurred while deleting files.")
def get_size(start_path):
total_size = 0
for dirpath, dirnames, filenames in os.walk(start_path):
for f in filenames:
fp = os.path.join(dirpath, f)
# skip if it is symbolic link
if not os.path.islink(fp):
total_size += os.path.getsize(fp)
return total_size
def human_readable_size(size, decimal_places=2):
for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']:
if size < 1024.0:
break
size /= 1024.0
return f"{size:.{decimal_places}f} {unit}"
def merge_loop():
"""
Main function that orchestrates the merge.
"""
# Start HF API
api = HfApi(token=HF_TOKEN)
# Create dataset (proceed only if successful)
if not create_dataset():
print("Failed to create dataset. Skipping merge loop.")
return
df = make_df("open-llm-leaderboard.csv", N_ROWS)
assert not df.empty, "DataFrame is empty. Cannot proceed with merge loop."
# Sample two models
dir_path = "/data"
sample = df.sample(n=2)
models = [sample.iloc[i] for i in range(2)]
# Get model name
model_name = get_name(models, USERNAME, version=0)
print("="*60)
print(f"Model name: {model_name}")
# Get model license
license = get_license(models)
print(f"License: {license}")
# Merge configs
yaml_config = create_config(models)
print(f"YAML config:{yaml_config}")
print(f"Data size: {human_readable_size(get_size(dir_path))}")
# Merge models
merge_models()
print("Model merged!")
# Create model card
print("Create model card")
create_model_card(yaml_config, model_name, USERNAME, license)
# Upload model
print("Upload model")
upload_model(api, USERNAME, model_name)
# Clear data
print("Clear data")
clear_data()
# Evaluate model on Runpod
print("Start evaluation")
create_pod(model_name, USERNAME)
print(f"Waiting for {WAIT_TIME/60} minutes...")
# Set the HF_DATASETS_CACHE environment variable
os.environ['HF_DATASETS_CACHE'] = "/data/hfcache/"
# Verify the environment variable is set
print(os.environ['HF_DATASETS_CACHE'])
# Install scrape-open-llm-leaderboard and mergekit
command = ["git", "clone", "-q", "https://github.com/Weyaxi/scrape-open-llm-leaderboard"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["pip", "install", "-r", "scrape-open-llm-leaderboard/requirements.txt"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["git", "clone", "https://github.com/arcee-ai/mergekit.git"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["pip", "install", "-e", "mergekit"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
sys.stdout = Logger("output.log")
# Gradio interface
title = """
<div align="center">
<p style="font-size: 44px;">♾️ AutoMerger</p>
<p style="font-size: 20px;">📃 <a href="https://huggingface.co/automerger">Merged models</a> • 🏆 <a href="https://huggingface.co/spaces/automerger/Yet_Another_LLM_Leaderboard">Leaderboard</a> • 📝 <a href="https://huggingface.co/blog/mlabonne/merge-models">Article</a> • 🐦 <a href="https://twitter.com/maximelabonne">Follow me on X</a></p>
<p><em>AutoMerger selects two Llama 3 8B models on top of the Open LLM Leaderboard, combine them with a merge technique, and evaluate the resulting model.</em></p>
</div>
"""
footer = '<div align="center"><p><em>Special thanks to <a href="https://huggingface.co/Weyaxi">Weyaxi</a> for the <a href="https://github.com/Weyaxi/scrape-open-llm-leaderboard">Open LLM Leaderboard Scraper</a>, <a href="https://github.com/cg123">Charles Goddard</a> for <a href="https://github.com/arcee-ai/mergekit">mergekit</a>, and <a href="https://huggingface.co/MaziyarPanahi">Maziyar Panahi</a> for making <a href="https://huggingface.co/collections/MaziyarPanahi/gguf-65afc99c3997c4b6d2d9e1d5">GGUF versions</a> of these automerges.</em></p></div>'
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
gr.Markdown(title)
logs = gr.Textbox(label="Logs")
demo.load(read_logs, None, logs, every=10)
leaderboard = gr.Dataframe(value=get_dataframe, datatype=["markdown", "number", "number", "number", "number", "number"], every=3600)
gr.Markdown(footer)
demo.queue(default_concurrency_limit=50).launch(server_name="0.0.0.0", show_error=True, prevent_thread_lock=True)
print("Start AutoMerger...")
# Main loop
while True:
merge_loop()
time.sleep(WAIT_TIME) |