File size: 5,524 Bytes
bd8327d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import random
import streamlit as st
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from transformers_interpret import SequenceClassificationExplainer
model_hub_url = 'https://huggingface.co/ml6team/distilbert-base-german-cased-toxic-comments'
model_name = 'ml6team/distilbert-base-german-cased-toxic-comments'
about_page_markdown = f"""# π€¬ Toxic Comment Detection Space
Made by [ML6](https://ml6.eu/).
Token attribution is performed using [transformers-interpret](https://github.com/cdpierse/transformers-interpret).
"""
regular_emojis = [
'π', 'π', 'πΆ', 'π',
]
undecided_emojis = [
'π€¨', 'π§', 'π₯Έ', 'π₯΄', 'π€·',
]
potty_mouth_emojis = [
'π€', 'πΏ', 'π‘', 'π€¬', 'β οΈ', 'β£οΈ', 'β’οΈ',
]
# Page setup
st.set_page_config(
page_title="Toxic Comment Detection Space",
page_icon="π€¬",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get help': None,
'Report a bug': None,
'About': about_page_markdown,
}
)
# Model setup
@st.cache(allow_output_mutation=True,
suppress_st_warning=True,
show_spinner=False)
def load_pipeline():
with st.spinner('Loading the model (this might take a while)...'):
toxicity_pipeline = pipeline(
'text-classification',
model=model_name,
tokenizer=model_name)
cls_explainer = SequenceClassificationExplainer(
toxicity_pipeline.model,
toxicity_pipeline.tokenizer)
return toxicity_pipeline, cls_explainer
toxicity_pipeline, cls_explainer = load_pipeline()
# Auxiliary functions
def format_explainer_html(html_string):
"""Extract tokens with attribution-based background color."""
soup = BeautifulSoup(html_string, 'html.parser')
p = soup.new_tag('p')
# Select token elements and remove model specific tokens
for token in soup.find_all('td')[-1].find_all('mark')[1:-1]:
p.append(token)
return p.prettify()
def classify_comment(comment):
"""Classify the given comment and augment with additional information."""
result = toxicity_pipeline(comment)[0]
# Add explanation
result['word_attribution'] = cls_explainer(comment, class_name="non_toxic")
result['visualitsation_html'] = cls_explainer.visualize()._repr_html_()
result['tokens_with_background'] = format_explainer_html(
result['visualitsation_html'])
# Choose emoji reaction
label, score = result['label'], result['score']
if label == 'toxic' and score > 0.1:
emoji = random.choice(potty_mouth_emojis)
elif label == 'non_toxic' and score > 0.1:
emoji = random.choice(regular_emojis)
else:
emoji = random.choice(undecided_emojis)
result.update({'text': comment, 'emoji': emoji})
# Add result to session
st.session_state.results.append(result)
# Start session
if 'results' not in st.session_state:
st.session_state.results = []
# Page
st.title('π€¬ German Toxic Comment Detection')
st.markdown("""This demo showcases the German toxic comment detection model.""")
# Introduction
st.markdown(f"""The model was trained using a sequence classification task on a combination of multiple German datasets containing toxicity, profanity, and hate speech. For a more comprehensive overview of the model check out the [model card on π€ Model Hub]({model_hub_url}).
""")
st.markdown("""Enter a comment that you want to classify below. The model will determine the probability that it is toxic and highlights how much each token contributes to its decision:
<font color="black">
<span style="background-color: rgb(250, 219, 219); opacity: 1;">r</span><span style="background-color: rgb(244, 179, 179); opacity: 1;">e</span><span style="background-color: rgb(238, 135, 135); opacity: 1;">d</span>
</font>
tokens indicate toxicity whereas
<font color="black">
<span style="background-color: rgb(224, 251, 224); opacity: 1;">g</span><span style="background-color: rgb(197, 247, 197); opacity: 1;">re</span><span style="background-color: rgb(121, 236, 121); opacity: 1;">en</span>
</font> tokens indicate indicate the opposite.
Try it yourself! π""",
unsafe_allow_html=True)
# Demo
with st.form("german-toxic-comment-detection-input", clear_on_submit=True):
text = st.text_area(
label='Enter the comment you want to classify below (in German):')
_, rightmost_col = st.columns([6,1])
submitted = rightmost_col.form_submit_button("Classify",
help="Classify comment")
# Listener
if submitted:
if text:
with st.spinner('Analysing comment...'):
classify_comment(text)
else:
st.error('**Error**: No comment to classify. Please provide a comment.')
# Results
if 'results' in st.session_state and st.session_state.results:
first = True
for result in st.session_state.results[::-1]:
if not first:
st.markdown("---")
st.markdown(f"Text:\n> {result['text']}")
col_1, col_2, col_3 = st.columns([1,2,2])
col_1.metric(label='', value=f"{result['emoji']}")
col_2.metric(label='Label', value=f"{result['label']}")
col_3.metric(label='Score', value=f"{result['score']:.3f}")
st.markdown(f"Token Attribution:\n{result['tokens_with_background']}",
unsafe_allow_html=True)
first = False
|