File size: 7,351 Bytes
c7272f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import math
import os

import numpy as np
import pandas as pd
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm

from build_vocab import WordVocab
from dataset import Seq2seqDataset

PAD = 0
UNK = 1
EOS = 2
SOS = 3
MASK = 4

class PositionalEncoding(nn.Module):
    "Implement the PE function. No batch support?"
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model) # (T,H)
        position = torch.arange(0., max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)

class TrfmSeq2seq(nn.Module):
    def __init__(self, in_size, hidden_size, out_size, n_layers, dropout=0.1):
        super(TrfmSeq2seq, self).__init__()
        self.in_size = in_size
        self.hidden_size = hidden_size
        self.embed = nn.Embedding(in_size, hidden_size)
        self.pe = PositionalEncoding(hidden_size, dropout)
        self.trfm = nn.Transformer(d_model=hidden_size, nhead=4, 
        num_encoder_layers=n_layers, num_decoder_layers=n_layers, dim_feedforward=hidden_size)
        self.out = nn.Linear(hidden_size, out_size)

    def forward(self, src):
        # src: (T,B)
        embedded = self.embed(src)  # (T,B,H)
        embedded = self.pe(embedded) # (T,B,H)
        hidden = self.trfm(embedded, embedded) # (T,B,H)
        out = self.out(hidden) # (T,B,V)
        out = F.log_softmax(out, dim=2) # (T,B,V)
        return out # (T,B,V)

    def _encode(self, src):
        # src: (T,B)
        embedded = self.embed(src)  # (T,B,H)
        embedded = self.pe(embedded) # (T,B,H)
        output = embedded
        for i in range(self.trfm.encoder.num_layers - 1):
            output = self.trfm.encoder.layers[i](output, None)  # (T,B,H)
        penul = output.detach().numpy()
        output = self.trfm.encoder.layers[-1](output, None)  # (T,B,H)
        if self.trfm.encoder.norm:
            output = self.trfm.encoder.norm(output) # (T,B,H)
        output = output.detach().numpy()
        # mean, max, first*2
        return np.hstack([np.mean(output, axis=0), np.max(output, axis=0), output[0,:,:], penul[0,:,:] ]) # (B,4H)
    
    def encode(self, src):
        # src: (T,B)
        batch_size = src.shape[1]
        if batch_size<=100:
            return self._encode(src)
        else: # Batch is too large to load
            print('There are {:d} molecules. It will take a little time.'.format(batch_size))
            st,ed = 0,100
            out = self._encode(src[:,st:ed]) # (B,4H)
            while ed<batch_size:
                st += 100
                ed += 100
                out = np.concatenate([out, self._encode(src[:,st:ed])], axis=0)
            return out

def parse_arguments():
    parser = argparse.ArgumentParser(description='Hyperparams')
    parser.add_argument('--n_epoch', '-e', type=int, default=5, help='number of epochs')
    parser.add_argument('--vocab', '-v', type=str, default='data/vocab.pkl', help='vocabulary (.pkl)')
    parser.add_argument('--data', '-d', type=str, default='data/chembl_25.csv', help='train corpus (.csv)')
    parser.add_argument('--out-dir', '-o', type=str, default='../result', help='output directory')
    parser.add_argument('--name', '-n', type=str, default='ST', help='model name')
    parser.add_argument('--seq_len', type=int, default=220, help='maximum length of the paired seqence')
    parser.add_argument('--batch_size', '-b', type=int, default=8, help='batch size')
    parser.add_argument('--n_worker', '-w', type=int, default=16, help='number of workers')
    parser.add_argument('--hidden', type=int, default=256, help='length of hidden vector')
    parser.add_argument('--n_layer', '-l', type=int, default=4, help='number of layers')
    parser.add_argument('--n_head', type=int, default=4, help='number of attention heads')
    parser.add_argument('--lr', type=float, default=1e-4, help='Adam learning rate')
    parser.add_argument('--gpu', metavar='N', type=int, nargs='+', help='list of GPU IDs to use')
    return parser.parse_args()


def evaluate(model, test_loader, vocab):
    model.eval()
    total_loss = 0
    for b, sm in enumerate(test_loader):
        sm = torch.t(sm.cuda()) # (T,B)
        with torch.no_grad():
            output = model(sm) # (T,B,V)
        loss = F.nll_loss(output.view(-1, len(vocab)),
                               sm.contiguous().view(-1),
                               ignore_index=PAD)
        total_loss += loss.item()
    return total_loss / len(test_loader)

def main():
    args = parse_arguments()
    assert torch.cuda.is_available()

    print('Loading dataset...')
    vocab = WordVocab.load_vocab(args.vocab)
    dataset = Seq2seqDataset(pd.read_csv(args.data)['canonical_smiles'].values, vocab)
    test_size = 10000
    train, test = torch.utils.data.random_split(dataset, [len(dataset)-test_size, test_size])
    train_loader = DataLoader(train, batch_size=args.batch_size, shuffle=True, num_workers=args.n_worker)
    test_loader = DataLoader(test, batch_size=args.batch_size, shuffle=False, num_workers=args.n_worker)
    print('Train size:', len(train))
    print('Test size:', len(test))
    del dataset, train, test

    model = TrfmSeq2seq(len(vocab), args.hidden, len(vocab), args.n_layer).cuda()
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    print(model)
    print('Total parameters:', sum(p.numel() for p in model.parameters()))

    best_loss = None
    for e in range(1, args.n_epoch):
        for b, sm in tqdm(enumerate(train_loader)):
            sm = torch.t(sm.cuda()) # (T,B)
            optimizer.zero_grad()
            output = model(sm) # (T,B,V)
            loss = F.nll_loss(output.view(-1, len(vocab)),
                    sm.contiguous().view(-1), ignore_index=PAD)
            loss.backward()
            optimizer.step()
            if b%1000==0:
                print('Train {:3d}: iter {:5d} | loss {:.3f} | ppl {:.3f}'.format(e, b, loss.item(), math.exp(loss.item())))
            if b%10000==0:
                loss = evaluate(model, test_loader, vocab)
                print('Val {:3d}: iter {:5d} | loss {:.3f} | ppl {:.3f}'.format(e, b, loss, math.exp(loss)))
                # Save the model if the validation loss is the best we've seen so far.
                if not best_loss or loss < best_loss:
                    print("[!] saving model...")
                    if not os.path.isdir(".save"):
                        os.makedirs(".save")
                    torch.save(model.state_dict(), './.save/trfm_new_%d_%d.pkl' % (e,b))
                    best_loss = loss


if __name__ == "__main__":
    try:
        main()
    except KeyboardInterrupt as e:
        print("[STOP]", e)