Spaces:
Running
Running
File size: 36,854 Bytes
360f81c 946a6c9 360f81c a1a3701 360f81c 7b26aba 360f81c 8ff63e4 1fc38bc 360f81c 9899c96 360f81c 8ff63e4 a904b94 033c6de 64446b4 360f81c 663521e 360f81c 55aeee4 360f81c 55aeee4 e9693d3 360f81c 67dda77 360f81c 8b30258 55aeee4 e9693d3 55aeee4 8b30258 360f81c e9693d3 9899c96 e9693d3 9899c96 e9693d3 360f81c 9899c96 360f81c 8b30258 360f81c 81672d7 1138cdd 360f81c 8b30258 07a2d08 8b30258 360f81c 64e7ccb 360f81c 8b30258 67dda77 8b30258 360f81c 35a3eb4 360f81c 35a3eb4 360f81c 35a3eb4 360f81c 64e7ccb 663521e 7b26aba 663521e 7b26aba 1fc38bc 360f81c 8ff63e4 360f81c 327a44b 360f81c 327a44b 360f81c 81672d7 8ff63e4 68a9e7e 8cf1cb0 68a9e7e 8cf1cb0 68a9e7e 64446b4 1f4ddf2 81672d7 f01c24a 360f81c 8ff63e4 aaadf66 8ff63e4 7ed0b8b 3c356de 64446b4 946a6c9 3c356de 946a6c9 7ed0b8b 8ff63e4 9f1c84b 8ff63e4 9f1c84b 8ff63e4 946a6c9 3c356de 946a6c9 8ff63e4 7ed0b8b 8ff63e4 7ed0b8b 8ff63e4 7ed0b8b 8ff63e4 7ed0b8b 8ff63e4 7ed0b8b 8ff63e4 68a9e7e 8ff63e4 68a9e7e 8ff63e4 68a9e7e 8ff63e4 946a6c9 3c356de 8ff63e4 7ed0b8b 8ff63e4 68a9e7e 8ff63e4 946a6c9 3c356de 8ff63e4 360f81c 81672d7 360f81c 8ff63e4 64446b4 aaadf66 64446b4 8ff63e4 7ed0b8b 3c356de 7ed0b8b 64446b4 7ed0b8b 8ff63e4 d4e66cd 8ff63e4 64446b4 8ff63e4 64446b4 8ff63e4 64446b4 8ff63e4 68a9e7e 64446b4 8ff63e4 d4e66cd 8ff63e4 68a9e7e 64446b4 8ff63e4 ac66c98 d2e1639 8ff63e4 ac66c98 8ff63e4 7ed0b8b 8ff63e4 7ed0b8b 8ff63e4 7ed0b8b 8ff63e4 46f6b9d 81672d7 46f6b9d 360f81c fe0d167 8ff63e4 360f81c 1138cdd 360f81c 46f6b9d 360f81c 968b189 360f81c 8ff63e4 360f81c 8ff63e4 360f81c 46f6b9d 81672d7 8ff63e4 81672d7 8ff63e4 81672d7 8ff63e4 81672d7 8ff63e4 81672d7 360f81c 46f6b9d 81672d7 360f81c 81672d7 360f81c 81672d7 8ff63e4 81672d7 8ff63e4 81672d7 8ff63e4 81672d7 8ff63e4 81672d7 8ff63e4 81672d7 360f81c 46f6b9d 360f81c 1fc38bc 360f81c 46f6b9d 81672d7 360f81c 8ff63e4 360f81c 1f4ddf2 360f81c 946a6c9 360f81c 8ff63e4 6ebe7f5 8ff63e4 6ebe7f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
from __future__ import annotations
import copy
import json
import random
import yaml
import requests
import itertools
import contextlib
import argparse
import os
from typing import Literal
from dateutil import parser, tz
import numpy as np
import gradio as gr
import pandas as pd
import plotly.io as pio
import plotly.express as px
from pandas.api.types import is_numeric_dtype, is_float_dtype
pio.templates.default = "plotly_white"
from spitfight.colosseum.client import ControllerClient
COLOSSEUM_UP = True
COLOSSEUM_DOWN_MESSAGE = f"<br/><h2 style='text-align: center'>The Colosseum is currently down for maintenance.</h2>"
class TableManager:
def __init__(self, data_dir: str) -> None:
"""Load leaderboard data from CSV files in data_dir.
Inside `data_dir`, there should be:
- `models.json`: a JSON file containing information about each model.
- `schema.yaml`: a YAML file containing the schema of the benchmark.
- `score.csv`: a CSV file containing the NLP evaluation metrics of each model.
- `*_benchmark.csv`: CSV files containing the system benchmark results.
Especially, the `*_benchmark.csv` files should be named after the
parameters used in the benchmark. For example, for the CSV file that
contains benchmarking results for A100 and the chat-concise task
(see `schema.yaml`) for possible choices, the file should be named
`A100_chat-concise_benchmark.csv`.
"""
# Load and merge CSV files.
df = self._read_tables(data_dir)
# Add the #params column.
models = json.load(open(f"{data_dir}/models.json"))
df["parameters"] = df["model"].apply(lambda x: models[x]["params"])
# Make the first column (model) an HTML anchor to the model's website.
def format_model_link(model_name: str) -> str:
url = models[model_name]["url"]
nickname = models[model_name]["nickname"]
return (
f'<a style="text-decoration: underline; text-decoration-style: dotted" '
f'target="_blank" href="{url}">{nickname}</a>'
)
df["model"] = df["model"].apply(format_model_link)
# Sort by our 'energy efficiency' score.
df = df.sort_values(by="energy", ascending=True)
# The full table where all the data are.
self.full_df = df
# Default view of the table is to only show the first options.
self.set_filter_get_df()
def _read_tables(self, data_dir: str) -> pd.DataFrame:
"""Read tables."""
df_score = pd.read_csv(f"{data_dir}/score.csv")
with open(f"{data_dir}/schema.yaml") as file:
self.schema: dict[str, list] = yaml.safe_load(file)
res_df = pd.DataFrame()
# Do a cartesian product of all the choices in the schema
# and try to read the corresponding CSV files.
for choice in itertools.product(*self.schema.values()):
filepath = f"{data_dir}/{'_'.join(choice)}_benchmark.csv"
with contextlib.suppress(FileNotFoundError):
df = pd.read_csv(filepath)
for key, val in zip(self.schema.keys(), choice):
df.insert(1, key, val)
res_df = pd.concat([res_df, df])
if res_df.empty:
raise ValueError(f"No benchmark CSV files were read from {data_dir=}.")
df = pd.merge(res_df, df_score, on=["model"]).round(2)
# Order columns.
columns = df.columns.to_list()
cols_to_order = ["model"]
cols_to_order.extend(self.schema.keys())
cols_to_order.append("energy")
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
df = df[columns]
# Delete rows with *any* NaN values.
df = df.dropna()
return df
def _format_msg(self, text: str) -> str:
"""Formats into HTML that prints in Monospace font."""
return f"<pre style='font-family: monospace'>{text}</pre>"
def add_column(self, column_name: str, formula: str):
"""Create and add a new column with the given formula."""
# If the user did not provide the name of the new column,
# generate a unique name for them.
if not column_name:
counter = 1
while (column_name := f"custom{counter}") in self.full_df.columns:
counter += 1
# If the user did not provide a formula, return an error message.
if not formula:
return self.cur_df, self._format_msg("Please enter a formula.")
# If there is an equal sign in the formula, `df.eval` will
# return an entire DataFrame with the new column, instead of
# just the new column. This is not what we want, so we check
# for this case and return an error message.
if "=" in formula:
return self.cur_df, self._format_msg("Invalid formula: expr cannot contain '='.")
# The user may want to update an existing column.
verb = "Updated" if column_name in self.full_df.columns else "Added"
# Evaluate the formula and catch any error.
try:
# Give the users some helper functions that can be used in the formula
# like "@sum(response_length)". Also wipe out some global variables.
col = self.full_df.eval(
formula,
local_dict={"sum": sum, "len": len, "max": max, "min": min},
global_dict={"global_tbm": None},
)
except Exception as exc:
return self.cur_df, self._format_msg(f"Invalid formula: {exc}")
# If the result is a numeric scalar, make it a Series.
# We may have deleted some models (rows) form the full dataframe when we
# called dropna, so we need to query the maximum index instead of taking len.
if isinstance(col, (int, float)):
col = pd.Series([col] * (self.full_df.index.max() + 1))
# We only accept numeric columns.
if not is_numeric_dtype(col):
return self.cur_df, self._format_msg("Invalid formula: result must be numeric.")
# Round if it's floating point.
if is_float_dtype(col):
col = col.round(2)
# If the column already exists, update it.
if column_name in self.full_df.columns:
self.full_df[column_name] = col
else:
self.full_df.insert(len(self.schema) + 1, column_name, col)
# If adding a column succeeded, `self.cur_df` should also be updated.
self.cur_df = self.full_df.loc[self.cur_index]
return self.cur_df, self._format_msg(f"{verb} column '{column_name}'.")
def get_dropdown(self):
columns = self.full_df.columns.tolist()[1:]
return [
gr.Dropdown(choices=columns, value="parameters", label="X"),
gr.Dropdown(choices=columns, value="energy", label="Y"),
gr.Dropdown(choices=["None", *columns], label="Z (optional)"),
]
def update_dropdown(self):
columns = self.full_df.columns.tolist()[1:]
return [
gr.Dropdown.update(choices=columns),
gr.Dropdown.update(choices=columns),
gr.Dropdown.update(choices=["None", *columns]),
]
def set_filter_get_df(self, *filters) -> pd.DataFrame:
"""Set the current set of filters and return the filtered DataFrame."""
# If the filter is empty, we default to the first choice for each key.
if not filters:
filters = [choices[:1] for choices in self.schema.values()]
index = np.full(len(self.full_df), True)
for setup, choice in zip(self.schema, filters):
index = index & self.full_df[setup].isin(choice)
self.cur_df = self.full_df.loc[index]
self.cur_index = index
return self.cur_df
def plot_scatter(self, width, height, x, y, z):
# The user did not select either x or y.
if not x or not y:
return None, width, height, self._format_msg("Please select both X and Y.")
# Width and height may be an empty string. Then we set them to 600.
if not width and not height:
width, height = "600", "600"
elif not width:
width = height
elif not height:
height = width
try:
width, height = int(width), int(height)
except ValueError:
return None, width, height, self._format_msg("Width and height should be positive integers.")
# Strip the <a> tag from model names.
text = self.cur_df["model"].apply(lambda x: x.split(">")[1].split("<")[0])
# Hide model names since they clutter the plots, and only show them on hover.
if z is None or z == "None" or z == "":
fig = px.scatter(self.cur_df, x=x, y=y, hover_name=text)
else:
fig = px.scatter_3d(self.cur_df, x=x, y=y, z=z, hover_name=text)
fig.update_traces(marker=dict(size=12, line=dict(width=2, color="DarkSlateGrey")))
fig.update_layout(width=width, height=height)
return fig, width, height, ""
# The global instance of the TableManager should only be used when
# initializing components in the Gradio interface. If the global instance
# is mutated while handling user sessions, the change will be reflected
# in every user session. Instead, the instance provided by gr.State should
# be used.
global_tbm = TableManager("data")
# Fetch the latest update date of the leaderboard repository.
resp = requests.get("https://api.github.com/repos/ml-energy/leaderboard/commits/master")
if resp.status_code != 200:
current_date = "[Failed to fetch]"
print("Failed to fetch the latest release date of the leaderboard repository.")
print(resp.json())
else:
current_datetime = parser.parse(resp.json()["commit"]["author"]["date"])
current_date = current_datetime.astimezone(tz.gettz("US/Eastern")).strftime("%Y-%m-%d")
# Custom JS.
# XXX: This is a hack to make the model names clickable.
# Ideally, we should set `datatype` in the constructor of `gr.DataFrame` to
# `["markdown"] + ["number"] * (len(df.columns) - 1)` and format models names
# as an HTML <a> tag. However, because we also want to dynamically add new
# columns to the table and Gradio < 4.0 does not support updating `datatype` with
# `gr.DataFrame.update` yet, we need to manually walk into the DOM and replace
# the innerHTML of the model name cells with dynamically interpreted HTML.
# Desired feature tracked at https://github.com/gradio-app/gradio/issues/3732
dataframe_update_js = f"""
function format_model_link() {{
// Iterate over the cells of the first column of the leaderboard table.
for (let index = 1; index <= {len(global_tbm.full_df)}; index++) {{
// Get the cell.
var cell = document.querySelector(
`#tab-leaderboard > div > div > div > table > tbody > tr:nth-child(${{index}}) > td:nth-child(1) > div > span`
);
// If nothing was found, it likely means that now the visible table has less rows
// than the full table. This happens when the user filters the table. In this case,
// we should just return.
if (cell == null) break;
// This check exists to make this function idempotent.
// Multiple changes to the Dataframe component may invoke this function,
// multiple times to the same HTML table (e.g., adding and sorting cols).
// Thus, we check whether we already formatted the model names by seeing
// whether the child of the cell is a text node. If it is not,
// it means we already parsed it into HTML, so we should just return.
if (cell.firstChild.nodeType != 3) break;
// Decode and interpret the innerHTML of the cell as HTML.
var decoded_string = new DOMParser().parseFromString(cell.innerHTML, "text/html").documentElement.textContent;
var temp = document.createElement("template");
temp.innerHTML = decoded_string;
var model_anchor = temp.content.firstChild;
// Replace the innerHTML of the cell with the interpreted HTML.
cell.replaceChildren(model_anchor);
}}
// Return all arguments as is.
return arguments
}}
"""
# Custom CSS.
custom_css = """
/* Make ML.ENERGY look like a clickable logo. */
.text-logo {
color: #23d175 !important;
text-decoration: none !important;
}
/* Make the submit button the same color as the logo. */
.btn-submit {
background: #23d175 !important;
color: white !important;
border: 0 !important;
}
/* Center the plotly plot inside its container. */
.plotly > div {
margin: auto !important;
}
/* Limit the width of the first column to 300 px. */
table td:first-child,
table th:first-child {
max-width: 300px;
overflow: auto;
white-space: nowrap;
}
/* Make tab buttons larger */
.tab-nav > button {
font-size: 18px !important;
}
/* Color texts. */
.green-text {
color: #23d175 !important;
}
.red-text {
color: #ff3860 !important;
}
/* Flashing model name borders. */
@keyframes blink {
0%, 33%, 67%, 100% {
border-color: transparent;
}
17%, 50%, 83% {
border-color: #23d175;
}
}
/* Older browser compatibility */
@-webkit-keyframes blink {
0%, 33%, 67%, 100% {
border-color: transparent;
}
17%, 50%, 83% {
border-color: #23d175;
}
}
.model-name-text {
border: 2px solid transparent; /* Transparent border initially */
animation: blink 3s ease-in-out 1; /* One complete cycle of animation, lasting 3 seconds */
-webkit-animation: blink 3s ease-in-out 1; /* Older browser compatibility */
}
/* Grey out components when the Colosseum is down. */
.greyed-out {
pointer-events: none;
opacity: 0.4;
}
/* Make the Citation header larger */
#citation-header > div > span {
font-size: 16px !important;
}
"""
intro_text = """
<h2>How much energy do modern Large Language Models (LLMs) consume for inference?</h2>
<p style="font-size: 16px">We used <a href="https://ml.energy/zeus">Zeus</a> to benchmark various open source LLMs in terms of how much time and energy they consume for inference.
Time and energy are of course not the only things we care about -- so we also benchmarked all of the models on a variety of NLP datasets,
including the ARC Challenge (reasoning), HellaSwag (common sense), and TruthfulQA (truthfulness).</p>
<p style="font-size: 16px">For more detailed information, please take a look at the <b>About</b> tab.
Every benchmark is limited in some sense -- Before you interpret the results, please take a look at the <b>Limitations</b> section there, too.</p>
"""
# The app will not start without a controller address set.
controller_addr = os.environ.get("COLOSSEUM_CONTROLLER_ADDR")
if controller_addr is None:
COLOSSEUM_UP = False
COLOSSEUM_DOWN_MESSAGE = "<br/><h2 style='text-align: center'>Disabled Colosseum for local testing.</h2>"
controller_addr = "localhost"
global_controller_client = ControllerClient(controller_addr=controller_addr, timeout=15)
# Load the list of models. To reload, the app should be restarted.
RANDOM_MODEL_NAME = "Random"
RANDOM_USER_PREFERENCE = "Two random models"
global_available_models = global_controller_client.get_available_models() if COLOSSEUM_UP else []
model_name_to_user_pref = {model: f"One is {model}" for model in global_available_models}
model_name_to_user_pref[RANDOM_MODEL_NAME] = RANDOM_USER_PREFERENCE
user_pref_to_model_name = {v: k for k, v in model_name_to_user_pref.items()}
# Colosseum helper functions.
def enable_interact():
return [gr.update(interactive=True)] * 2
def disable_interact():
return [gr.update(interactive=False)] * 2
def consumed_less_energy_message(energy_a, energy_b):
"""Return a message that indicates that the user chose the model that consumed less energy.
By default report in "%f %" but if the difference is larger than 2 times, report in "%f X".
"""
less_energy = min(energy_a, energy_b)
more_energy = max(energy_a, energy_b)
factor = less_energy / more_energy
how_much = f"{1 / factor:.1f}x" if factor <= 0.5 else f"{100 - factor * 100:.1f}%"
return f"<h2>That response also <span class='green-text'>consumed {how_much} less energy</span> ({energy_a:,.0f} J vs. {energy_b:,.0f} J)!</h2>"
def consumed_more_energy_message(energy_a, energy_b):
"""Return a message that indicates that the user chose the model that consumed more energy.
By default report in "%f %" but if the difference is larger than 2 times, report in "%f X".
"""
less_energy = min(energy_a, energy_b)
more_energy = max(energy_a, energy_b)
factor = more_energy / less_energy
how_much = f"{factor:.1f}x" if factor >= 2.0 else f"{factor * 100 - 100:.1f}%"
return f"<h2>That response <span class='red-text'>consumed {how_much} more energy</span> ({energy_a:,.0f} J vs. {energy_b:,.0f} J).</h2>"
# Colosseum event handlers
def on_load():
"""Intialize the dataframe, shuffle the model preference dropdown choices."""
dataframe = global_tbm.set_filter_get_df()
available_models = copy.deepcopy(global_available_models)
random.shuffle(available_models)
available_models.insert(0, RANDOM_MODEL_NAME)
return dataframe, gr.Dropdown.update(choices=[model_name_to_user_pref[model] for model in available_models])
def add_prompt_disable_submit(prompt, history_a, history_b):
"""Add the user's prompt to the two model's history and disable further submission."""
client = global_controller_client.fork()
return [
gr.Textbox.update(value=" ", interactive=False),
gr.Button.update(interactive=False),
gr.Dropdown.update(interactive=False),
history_a + [[prompt, ""]],
history_b + [[prompt, ""]],
client,
]
def generate_responses(client: ControllerClient, user_preference, history_a, history_b):
"""Generate responses for the two models."""
model_preference = user_pref_to_model_name[user_preference]
for resp_a, resp_b in itertools.zip_longest(
client.prompt(prompt=history_a[-1][0], index=0, model_preference=model_preference),
client.prompt(prompt=history_b[-1][0], index=1, model_preference=model_preference),
):
if resp_a is not None:
history_a[-1][1] += resp_a
if resp_b is not None:
history_b[-1][1] += resp_b
yield [history_a, history_b]
def make_resp_vote_func(victory_index: Literal[0, 1]):
"""Return a function that will be called when the user clicks on response preference vote buttons."""
def resp_vote_func(client: ControllerClient):
vote_response = client.response_vote(victory_index=victory_index)
model_name_a, model_name_b = map(lambda n: f"## {n}", vote_response.model_names)
energy_a, energy_b = vote_response.energy_consumptions
# User liked the model that also consumed less energy.
if (victory_index == 0 and energy_a <= energy_b) or (victory_index == 1 and energy_a >= energy_b):
energy_message = consumed_less_energy_message(energy_a, energy_b)
return [
# Disable response vote buttons
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
# Reveal model names
gr.Markdown.update(model_name_a, visible=True), gr.Markdown.update(model_name_b, visible=True),
# Display energy consumption comparison message
gr.Markdown.update(energy_message, visible=True),
# Keep energy vote buttons hidden
gr.Button.update(visible=False, interactive=False), gr.Button.update(visible=False, interactive=False),
# Enable reset button
gr.Button.update(visible=True, interactive=True),
]
# User liked the model that consumed more energy.
else:
energy_message = consumed_more_energy_message(energy_a, energy_b)
return [
# Disable response vote buttons
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
# Leave model names hidden
gr.Markdown.update(visible=False), gr.Markdown.update(visible=False),
# Display energy consumption comparison message
gr.Markdown.update(energy_message, visible=True),
# Reveal and enable energy vote buttons
gr.Button.update(visible=True, interactive=True), gr.Button.update(visible=True, interactive=True),
# Keep the reset button disabled
gr.Button.update(visible=False, interactive=False),
]
return resp_vote_func
def make_energy_vote_func(is_worth: bool):
"""Return a function that will be called when the user clicks on energy vote buttons."""
def energy_vote_func(client: ControllerClient, energy_message: str):
vote_response = client.energy_vote(is_worth=is_worth)
model_name_a, model_name_b = map(lambda n: f"## {n}", vote_response.model_names)
return [
# Reveal model names
gr.Markdown.update(model_name_a, visible=True), gr.Markdown.update(model_name_b, visible=True),
# Disable energy vote buttons
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
# Enable reset button
gr.Button.update(interactive=True, visible=True),
# Append to the energy comparison message
energy_message[:-5] + (" Fair enough.</h2>" if is_worth else " Wasn't worth it.</h2>"),
]
return energy_vote_func
def play_again():
available_models = copy.deepcopy(global_available_models)
random.shuffle(available_models)
available_models.insert(0, RANDOM_MODEL_NAME)
return [
# Clear chatbot history
None, None,
# Enable prompt textbox and submit button
gr.Textbox.update(value="", interactive=True), gr.Button.update(interactive=True),
# Mask model names
gr.Markdown.update(value="", visible=False), gr.Markdown.update(value="", visible=False),
# Hide energy vote buttons and message
gr.Button.update(visible=False), gr.Button.update(visible=False), gr.Markdown.update(visible=False),
# Enable model preference dropdown and shuffle choices
gr.Dropdown.update(value=RANDOM_USER_PREFERENCE, choices=[model_name_to_user_pref[model] for model in available_models], interactive=True),
# Disable reset button
gr.Button.update(interactive=False, visible=False),
]
focus_prompt_input_js = """
function() {
for (let textarea of document.getElementsByTagName("textarea")) {
if (textarea.hasAttribute("autofocus")) {
textarea.focus();
return;
}
}
}
"""
with gr.Blocks(css=custom_css) as block:
tbm = gr.State(global_tbm) # type: ignore
with gr.Box():
gr.HTML("<h1><a href='https://ml.energy' class='text-logo'>ML.ENERGY</a> Leaderboard</h1>")
with gr.Tabs():
# Tab: Colosseum.
with gr.TabItem("Colosseum ⚔️️"):
if COLOSSEUM_UP:
gr.Markdown(open("docs/colosseum_top.md").read())
else:
gr.HTML(COLOSSEUM_DOWN_MESSAGE)
gr.HTML("<h3 style='text-align: center'>The energy leaderboard is still available.</h3><br/>")
with gr.Row():
model_preference_dropdown = gr.Dropdown(
value=RANDOM_USER_PREFERENCE,
label="Prefer a specific model?",
interactive=COLOSSEUM_UP,
elem_classes=None if COLOSSEUM_UP else ["greyed-out"],
)
with gr.Group():
with gr.Row():
prompt_input = gr.Textbox(
show_label=False,
placeholder="Input your prompt, e.g., 'Explain machine learning in simple terms.'",
container=False,
scale=20,
interactive=COLOSSEUM_UP,
elem_classes=None if COLOSSEUM_UP else ["greyed-out"],
)
prompt_submit_btn = gr.Button(
value="⚔️️ Fight!",
elem_classes=["btn-submit"] if COLOSSEUM_UP else ["greyed-out"],
min_width=60,
scale=1,
interactive=COLOSSEUM_UP,
)
with gr.Row():
masked_model_names = []
chatbots = []
resp_vote_btn_list: list[gr.component.Component] = []
with gr.Column():
with gr.Row():
masked_model_names.append(gr.Markdown(visible=False, elem_classes=["model-name-text"]))
with gr.Row():
chatbots.append(gr.Chatbot(label="Model A", elem_id="chatbot", height=400, elem_classes=None if COLOSSEUM_UP else ["greyed-out"]))
with gr.Row():
left_resp_vote_btn = gr.Button(value="👈 Model A is better", interactive=False)
resp_vote_btn_list.append(left_resp_vote_btn)
with gr.Column():
with gr.Row():
masked_model_names.append(gr.Markdown(visible=False, elem_classes=["model-name-text"]))
with gr.Row():
chatbots.append(gr.Chatbot(label="Model B", elem_id="chatbot", height=400, elem_classes=None if COLOSSEUM_UP else ["greyed-out"]))
with gr.Row():
right_resp_vote_btn = gr.Button(value="👉 Model B is better", interactive=False)
resp_vote_btn_list.append(right_resp_vote_btn)
with gr.Row():
energy_comparison_message = gr.HTML(visible=False)
with gr.Row():
worth_energy_vote_btn = gr.Button(value="The better response was worth 👍 the extra energy.", visible=False)
notworth_energy_vote_btn = gr.Button(value="Not really worth that much more. 👎", visible=False)
energy_vote_btn_list: list[gr.component.Component] = [worth_energy_vote_btn, notworth_energy_vote_btn]
with gr.Row():
play_again_btn = gr.Button("Play again!", visible=False, elem_classes=["btn-submit"])
gr.Markdown(open("docs/colosseum_bottom.md").read())
controller_client = gr.State()
(prompt_input
.submit(add_prompt_disable_submit, [prompt_input, *chatbots], [prompt_input, prompt_submit_btn, model_preference_dropdown, *chatbots, controller_client], queue=False)
.then(generate_responses, [controller_client, model_preference_dropdown, *chatbots], [*chatbots], queue=True, show_progress="hidden")
.then(enable_interact, None, resp_vote_btn_list, queue=False))
(prompt_submit_btn
.click(add_prompt_disable_submit, [prompt_input, *chatbots], [prompt_input, prompt_submit_btn, model_preference_dropdown, *chatbots, controller_client], queue=False)
.then(generate_responses, [controller_client, model_preference_dropdown, *chatbots], [*chatbots], queue=True, show_progress="hidden")
.then(enable_interact, None, resp_vote_btn_list, queue=False))
left_resp_vote_btn.click(
make_resp_vote_func(victory_index=0),
[controller_client],
[*resp_vote_btn_list, *masked_model_names, energy_comparison_message, *energy_vote_btn_list, play_again_btn],
queue=False,
)
right_resp_vote_btn.click(
make_resp_vote_func(victory_index=1),
[controller_client],
[*resp_vote_btn_list, *masked_model_names, energy_comparison_message, *energy_vote_btn_list, play_again_btn],
queue=False,
)
worth_energy_vote_btn.click(
make_energy_vote_func(is_worth=True),
[controller_client, energy_comparison_message],
[*masked_model_names, *energy_vote_btn_list, play_again_btn, energy_comparison_message],
queue=False,
)
notworth_energy_vote_btn.click(
make_energy_vote_func(is_worth=False),
[controller_client, energy_comparison_message],
[*masked_model_names, *energy_vote_btn_list, play_again_btn, energy_comparison_message],
queue=False,
)
(play_again_btn
.click(
play_again,
None,
[*chatbots, prompt_input, prompt_submit_btn, *masked_model_names, *energy_vote_btn_list, energy_comparison_message, model_preference_dropdown, play_again_btn],
queue=False,
)
.then(None, _js=focus_prompt_input_js, queue=False))
# Tab: Leaderboard.
with gr.Tab("Leaderboard"):
with gr.Box():
gr.HTML(intro_text)
# Block: Checkboxes to select benchmarking parameters.
with gr.Row():
with gr.Box():
gr.Markdown("### Benchmark results to show")
checkboxes: list[gr.CheckboxGroup] = []
for key, choices in global_tbm.schema.items():
# Specifying `value` makes everything checked by default.
checkboxes.append(gr.CheckboxGroup(choices=choices, value=choices[:1], label=key))
# Block: Leaderboard table.
with gr.Row():
dataframe = gr.Dataframe(type="pandas", elem_id="tab-leaderboard", interactive=False)
# Make sure the models have clickable links.
dataframe.change(None, None, None, _js=dataframe_update_js, queue=False)
# Table automatically updates when users check or uncheck any checkbox.
for checkbox in checkboxes:
checkbox.change(TableManager.set_filter_get_df, inputs=[tbm, *checkboxes], outputs=dataframe, queue=False)
# Block: Allow users to add new columns.
with gr.Box():
gr.Markdown("### Add custom columns to the table")
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
colname_input = gr.Textbox(lines=1, label="Custom column name")
formula_input = gr.Textbox(lines=1, label="Formula (@sum, @len, @max, and @min are supported)")
with gr.Column(scale=1):
with gr.Row():
add_col_btn = gr.Button("Add to table (⏎)", elem_classes=["btn-submit"])
with gr.Row():
clear_input_btn = gr.Button("Clear")
with gr.Row():
add_col_message = gr.HTML("")
gr.Examples(
examples=[
["power", "energy / latency"],
["token_per_joule", "response_length / energy"],
["verbose", "response_length > @sum(response_length) / @len(response_length)"],
],
inputs=[colname_input, formula_input],
)
colname_input.submit(
TableManager.add_column,
inputs=[tbm, colname_input, formula_input],
outputs=[dataframe, add_col_message],
queue=False,
)
formula_input.submit(
TableManager.add_column,
inputs=[tbm, colname_input, formula_input],
outputs=[dataframe, add_col_message],
queue=False,
)
add_col_btn.click(
TableManager.add_column,
inputs=[tbm, colname_input, formula_input],
outputs=[dataframe, add_col_message],
queue=False,
)
clear_input_btn.click(
lambda: (None, None, None),
inputs=None,
outputs=[colname_input, formula_input, add_col_message],
queue=False,
)
# Block: Allow users to plot 2D and 3D scatter plots.
with gr.Box():
gr.Markdown("### Scatter plot (Hover over marker to show model name)")
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
# Initialize the dropdown choices with the global TableManager with just the original columns.
axis_dropdowns = global_tbm.get_dropdown()
with gr.Column(scale=1):
with gr.Row():
plot_btn = gr.Button("Plot", elem_classes=["btn-submit"])
with gr.Row():
clear_plot_btn = gr.Button("Clear")
with gr.Accordion("Plot size (600 x 600 by default)", open=False):
with gr.Row():
plot_width_input = gr.Textbox("600", lines=1, label="Width (px)")
plot_height_input = gr.Textbox("600", lines=1, label="Height (px)")
with gr.Row():
plot = gr.Plot(value=global_tbm.plot_scatter(
plot_width_input.value,
plot_height_input.value,
x=axis_dropdowns[0].value,
y=axis_dropdowns[1].value,
z=axis_dropdowns[2].value,
)[0]) # type: ignore
with gr.Row():
plot_message = gr.HTML("")
add_col_btn.click(TableManager.update_dropdown, inputs=tbm, outputs=axis_dropdowns, queue=False) # type: ignore
plot_width_input.submit(
TableManager.plot_scatter,
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns],
outputs=[plot, plot_width_input, plot_height_input, plot_message],
queue=False,
)
plot_height_input.submit(
TableManager.plot_scatter,
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns],
outputs=[plot, plot_width_input, plot_height_input, plot_message],
queue=False,
)
plot_btn.click(
TableManager.plot_scatter,
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns],
outputs=[plot, plot_width_input, plot_height_input, plot_message],
queue=False,
)
clear_plot_btn.click(
lambda: (None,) * 7,
None,
outputs=[*axis_dropdowns, plot, plot_width_input, plot_height_input, plot_message],
queue=False,
)
# Block: Leaderboard date.
with gr.Row():
gr.HTML(f"<h3 style='color: gray'>Last updated: {current_date}</h3>")
# Tab: About page.
with gr.Tab("About"):
# Read in LEADERBOARD.md
gr.Markdown(open("docs/leaderboard.md").read())
# Citation
with gr.Accordion("📚 Citation", open=False, elem_id="citation-header"):
citation_text = open("docs/citation.bib").read()
gr.Textbox(
value=citation_text,
label="BibTeX for the leaderboard and the Zeus framework used for benchmarking:",
lines=len(list(filter(lambda c: c == "\n", citation_text))),
interactive=False,
show_copy_button=True,
)
# Load the table on page load.
block.load(on_load, outputs=[dataframe, model_preference_dropdown], queue=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Specify if sharing is enabled")
parser.add_argument("--concurrency", type=int, default=50)
args = parser.parse_args()
block.queue(concurrency_count=args.concurrency, api_open=False).launch(share=args.share, show_error=True)
|