File size: 1,659 Bytes
fe6f0ef
 
eeaa8d0
 
fe6f0ef
eeaa8d0
5e00ad7
fe6f0ef
 
 
 
 
 
 
 
 
 
 
5e00ad7
 
fe6f0ef
5e00ad7
 
fe6f0ef
ad7849a
b8fb8cf
ad7849a
b8fb8cf
ad7849a
b8fb8cf
fe6f0ef
 
5e00ad7
fe6f0ef
5e00ad7
 
fe6f0ef
5e00ad7
b8fb8cf
fe6f0ef
5e00ad7
5aab43b
ad7849a
 
fe6f0ef
 
 
 
5e00ad7
fe6f0ef
 
5e00ad7
fe6f0ef
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import tensorflow as tf
from huggingface_hub import from_pretrained_keras

# Load your trained models
model1 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")
#model2 = from_pretrained_keras("ml-debi/EfficientNetB0-Food101")

with open('classes.txt', 'r') as f:
    classes = [line.strip() for line in f]

# Add information about the models
model1_info = """
### Model 1 Information

This model is based on the EfficientNetB0 architecture and was trained on the Food101 dataset.
"""

#model2_info = """
#### Model 2 Information

#This model is based on the EfficientNetB0 architecture and was trained on augmented data, providing improved generalization.
#"""

def preprocess(image):
    print("before resize", image.shape)
    image = tf.image.resize(image, [224, 224])
    
    image = tf.expand_dims(image, axis=0)
    print("After expanddims", image.shape)
    return image

def predict(image):
    # Choose the model based on the dropdown selection
    #print("---model_selection---", model_selection) #
    #model = model1 if model_selection == "EfficentNetB0 Fine Tune" else model2

    #print(model.summary())

    image = preprocess(image)
    prediction = model1.predict(image)
    print("model prediction", prediction)
    predicted_class = classes[int(tf.argmax(prediction, axis=1))]
    confidence = tf.reduce_max(prediction).numpy()
    return predicted_class, confidence

iface = gr.Interface(
    fn=predict,
    inputs=[gr.Image()],
    outputs=[gr.Textbox(label="Predicted Class"), gr.Textbox(label="Confidence")],
    title="Transfer Learning Mini Project",
    description=f"{model1_info}\n",
)

iface.launch()