File size: 4,772 Bytes
4e2136a
0bb16c0
 
 
 
 
 
 
 
 
4e2136a
 
 
 
 
 
 
 
0bb16c0
 
 
 
 
4e2136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb16c0
 
 
4e2136a
 
 
 
0bb16c0
4e2136a
 
 
 
 
 
 
 
 
 
 
0bb16c0
 
4e2136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb16c0
 
 
4e2136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb16c0
 
4e2136a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import itertools

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device: {device}")

tokenizer = AutoTokenizer.from_pretrained(
    "rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False
)
model = AutoModelForCausalLM.from_pretrained(
    "rinna/japanese-gpt-neox-3.6b-instruction-sft",
    device_map="auto",
    torch_dtype=torch.float16,
)
model = model.to(device)


@torch.no_grad()
def inference_func(prompt, max_new_tokens=128, temperature=0.7):
    token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
    output_ids = model.generate(
        token_ids.to(model.device),
        do_sample=True,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
    )
    output = tokenizer.decode(
        output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True
    )
    output = output.replace("<NL>", "\n")
    return output


def make_prompt(message, chat_history, max_context_size: int = 10):
    contexts = chat_history + [[message, ""]]
    contexts = list(itertools.chain.from_iterable(contexts))
    if max_context_size > 0:
        context_size = max_context_size - 1
    else:
        context_size = 100000
    contexts = contexts[-context_size:]
    prompt = []
    for idx, context in enumerate(reversed(contexts)):
        if idx % 2 == 0:
            prompt = [f"システム: {context}"] + prompt
        else:
            prompt = [f"ユーザー: {context}"] + prompt
    prompt = "<NL>".join(prompt)
    return prompt


def interact_func(message, chat_history, max_context_size, max_new_tokens, temperature):
    prompt = make_prompt(message, chat_history, max_context_size)
    print(f"prompt: {prompt}")
    generated = inference_func(prompt, max_new_tokens, temperature)
    print(f"generated: {generated}")
    chat_history.append((message, generated))
    return "", chat_history


ORIGINAL_SPACE_ID = "mkshing/rinna-japanese-gpt-neox-3.6b-instruction-sft"
SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
"""

if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
    SETTINGS = (
        f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
    )
else:
    SETTINGS = "Settings"
CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
"""


with gr.Blocks() as demo:
    gr.Markdown("""# Chat with `rinna/japanese-gpt-neox-3.6b-instruction-sft`
    <a href=\"https://colab.research.google.com/github/mkshing/notebooks/blob/main/rinna_japanese_gpt_neox_3_6b_instruction_sft.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>
    
    This demo is a chat UI for [rinna/japanese-gpt-neox-3.6b-instruction-sft](https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft). 
    """)
    with gr.Accordion("Configs", open=False):
        # max_context_size = the number of turns * 2
        max_context_size = gr.Number(value=10, label="max_context_size", precision=0)
        max_new_tokens = gr.Number(value=128, label="max_new_tokens", precision=0)
        temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="temperature")
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    msg.submit(
        interact_func,
        [msg, chatbot, max_context_size, max_new_tokens, temperature],
        [msg, chatbot],
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch(debug=True)