Spaces:
Sleeping
Sleeping
File size: 1,875 Bytes
a50312e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import torch
import torch.nn as nn
from collections import OrderedDict
class PoseDecoder(nn.Module):
def __init__(self, num_ch_enc, num_input_features, num_frames_to_predict_for=None, stride=1):
super(PoseDecoder, self).__init__()
self.num_ch_enc = num_ch_enc
self.num_input_features = num_input_features
if num_frames_to_predict_for is None:
num_frames_to_predict_for = num_input_features - 1
self.num_frames_to_predict_for = num_frames_to_predict_for
self.convs = OrderedDict()
self.convs[("squeeze")] = nn.Conv2d(self.num_ch_enc[-1], 256, 1)
self.convs[("pose", 0)] = nn.Conv2d(num_input_features * 256, 256, 3, stride, 1)
self.convs[("pose", 1)] = nn.Conv2d(256, 256, 3, stride, 1)
self.convs[("pose", 2)] = nn.Conv2d(256, 6 * num_frames_to_predict_for, 1)
self.relu = nn.ReLU()
self.net = nn.ModuleList(list(self.convs.values()))
def forward(self, input_features):
last_features = [f[-1] for f in input_features]
cat_features = [self.relu(self.convs["squeeze"](f)) for f in last_features]
cat_features = torch.cat(cat_features, 1)
out = cat_features
for i in range(3):
out = self.convs[("pose", i)](out)
if i != 2:
out = self.relu(out)
out = out.mean(3).mean(2)
out = 0.01 * out.view(-1, self.num_frames_to_predict_for, 1, 6)
axisangle = out[..., :3]
translation = out[..., 3:]
return axisangle, translation
|