File size: 33,201 Bytes
e015760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.

from __future__ import absolute_import, division, print_function

import numpy as np
from scipy.spatial.transform import Rotation as R
import torch
import torch.nn as nn
import torch.nn.functional as F

# from torchmetrics.image.fid import FrechetInceptionDistance

# def silog(real1, fake1):
#     # filter out invalid pixels
#     real = real1.clone()
#     fake = fake1.clone()
#     N = (real>0).float().sum()
#     mask1 = (real<=0)
#     mask2 = (fake<=0)      
#     mask3 = mask1+mask2
#     # mask = 1.0 - (mask3>0).float()  
#     mask = (mask3>0)
#     fake[mask] = 1.
#     real[mask] = 1.
    
#     loss_ = torch.log(real)-torch.log(fake)
#     loss = torch.sqrt((torch.sum( loss_ ** 2) / N ) - ((torch.sum(loss_)/N)**2))
#     return loss



class SpatialTransformer(nn.Module):

    def __init__(self, size, mode='bilinear'):
        """

        Instiantiate the block

            :param size: size of input to the spatial transformer block

            :param mode: method of interpolation for grid_sampler

        """
        super(SpatialTransformer, self).__init__()

        # Create sampling grid
        vectors = [torch.arange(0, s) for s in size]
        grids = torch.meshgrid(vectors)
        grid = torch.stack(grids) # y, x, z
        grid = torch.unsqueeze(grid, 0)  # add batch
        grid = grid.type(torch.FloatTensor)
        self.register_buffer('grid', grid)
        self.mode = mode

    def forward(self, src, flow):
        """

        Push the src and flow through the spatial transform block

            :param src: the source image

            :param flow: the output from the U-Net

        """
        new_locs = self.grid + flow
        shape = flow.shape[2:]

        # Need to normalize grid values to [-1, 1] for resampler
        for i in range(len(shape)):
            new_locs[:, i, ...] = 2*(new_locs[:, i, ...]/(shape[i]-1) - 0.5)

        if len(shape) == 2:
            new_locs = new_locs.permute(0, 2, 3, 1)
            new_locs = new_locs[..., [1, 0]]
        elif len(shape) == 3:
            new_locs = new_locs.permute(0, 2, 3, 4, 1)
            new_locs = new_locs[..., [2, 1, 0]]

        return F.grid_sample(src, new_locs, mode=self.mode, padding_mode="border")



class optical_flow(nn.Module):

    def __init__(self, size, batch_size, height, width, eps=1e-7):
        super(optical_flow, self).__init__()

        # Create sampling grid
        vectors = [torch.arange(0, s) for s in size]
        grids = torch.meshgrid(vectors)
        grid = torch.stack(grids)  # y, x, z
        grid = torch.unsqueeze(grid, 0)  # add batch
        grid = grid.type(torch.FloatTensor)
        self.register_buffer('grid', grid)

        self.batch_size = batch_size
        self.height = height
        self.width = width
        self.eps = eps

    def forward(self, points, K, T):

        P = torch.matmul(K, T)[:, :3, :]
        cam_points = torch.matmul(P, points)
        pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
        pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
        optical_flow =  pix_coords[:, [1,0], ...] - self.grid

        return optical_flow


def get_corresponding_map(data):
    """

    :param data: unnormalized coordinates Bx2xHxW

    :return: Bx1xHxW

    """
    B, _, H, W = data.size()

    # x = data[:, 0, :, :].view(B, -1).clamp(0, W - 1)  # BxN (N=H*W)
    # y = data[:, 1, :, :].view(B, -1).clamp(0, H - 1)

    x = data[:, 0, :, :].view(B, -1)  # BxN (N=H*W)
    y = data[:, 1, :, :].view(B, -1)

    # invalid = (x < 0) | (x > W - 1) | (y < 0) | (y > H - 1)   # BxN
    # invalid = invalid.repeat([1, 4])

    x1 = torch.floor(x)
    x_floor = x1.clamp(0, W - 1)
    y1 = torch.floor(y)
    y_floor = y1.clamp(0, H - 1)
    x0 = x1 + 1
    x_ceil = x0.clamp(0, W - 1)
    y0 = y1 + 1
    y_ceil = y0.clamp(0, H - 1)

    x_ceil_out = x0 != x_ceil
    y_ceil_out = y0 != y_ceil
    x_floor_out = x1 != x_floor
    y_floor_out = y1 != y_floor
    invalid = torch.cat([x_ceil_out | y_ceil_out,
                         x_ceil_out | y_floor_out,
                         x_floor_out | y_ceil_out,
                         x_floor_out | y_floor_out], dim=1)

    # encode coordinates, since the scatter function can only index along one axis
    corresponding_map = torch.zeros(B, H * W).type_as(data)
    indices = torch.cat([x_ceil + y_ceil * W,
                         x_ceil + y_floor * W,
                         x_floor + y_ceil * W,
                         x_floor + y_floor * W], 1).long()  # BxN   (N=4*H*W)
    values = torch.cat([(1 - torch.abs(x - x_ceil)) * (1 - torch.abs(y - y_ceil)),
                        (1 - torch.abs(x - x_ceil)) * (1 - torch.abs(y - y_floor)),
                        (1 - torch.abs(x - x_floor)) * (1 - torch.abs(y - y_ceil)),
                        (1 - torch.abs(x - x_floor)) * (1 - torch.abs(y - y_floor))],
                       1)
    # values = torch.ones_like(values)

    values[invalid] = 0

    corresponding_map.scatter_add_(1, indices, values)
    # decode coordinates
    corresponding_map = corresponding_map.view(B, H, W)

    return corresponding_map.unsqueeze(1)

class get_occu_mask_backward(nn.Module):

    def __init__(self, size):
        super(get_occu_mask_backward, self).__init__()

        # Create sampling grid
        vectors = [torch.arange(0, s) for s in size]
        grids = torch.meshgrid(vectors)
        grid = torch.stack(grids) # y, x, z
        grid = torch.unsqueeze(grid, 0)  # add batch
        grid = grid.type(torch.FloatTensor)
        self.register_buffer('grid', grid)

    def forward(self, flow, th=0.95):
        
        new_locs = self.grid + flow
        new_locs = new_locs[:, [1,0], ...]
        corr_map = get_corresponding_map(new_locs)
        occu_map = corr_map
        occu_mask = (occu_map > th).float()

        return occu_mask, occu_map


class get_occu_mask_bidirection(nn.Module):

    def __init__(self, size, mode='bilinear'):
        super(get_occu_mask_bidirection, self).__init__()

        # Create sampling grid
        vectors = [torch.arange(0, s) for s in size]
        grids = torch.meshgrid(vectors)
        grid = torch.stack(grids) # y, x, z
        grid = torch.unsqueeze(grid, 0)  # add batch
        grid = grid.type(torch.FloatTensor)
        self.register_buffer('grid', grid)
        self.mode = mode

    def forward(self, flow12, flow21, scale=0.01, bias=0.5):
        
        new_locs = self.grid + flow12
        shape = flow12.shape[2:]

        # Need to normalize grid values to [-1, 1] for resampler
        for i in range(len(shape)):
            new_locs[:, i, ...] = 2*(new_locs[:, i, ...]/(shape[i]-1) - 0.5)

        if len(shape) == 2:
            new_locs = new_locs.permute(0, 2, 3, 1)
            new_locs = new_locs[..., [1, 0]]
        elif len(shape) == 3:
            new_locs = new_locs.permute(0, 2, 3, 4, 1)
            new_locs = new_locs[..., [2, 1, 0]]

        flow21_warped = F.grid_sample(flow21, new_locs, mode=self.mode, padding_mode="border")
        flow12_diff = torch.abs(flow12 + flow21_warped)
        # mag = (flow12 * flow12).sum(1, keepdim=True) + \
        # (flow21_warped * flow21_warped).sum(1, keepdim=True)
        # occ_thresh = scale * mag + bias
        # occ_mask = (flow12_diff * flow12_diff).sum(1, keepdim=True) < occ_thresh
        
        return flow12_diff
    
# functions 
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
    """

    Return the rotation matrices for one of the rotations about an axis

    of which Euler angles describe, for each value of the angle given.



    Args:

        axis: Axis label "X" or "Y or "Z".

        angle: any shape tensor of Euler angles in radians



    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """

    cos = torch.cos(angle)
    sin = torch.sin(angle)
    one = torch.ones_like(angle)
    zero = torch.zeros_like(angle)

    if axis == "X":
        R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
    elif axis == "Y":
        R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
    elif axis == "Z":
        R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
    else:
        raise ValueError("letter must be either X, Y or Z.")

    return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))

def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
    """

    Convert rotations given as Euler angles in radians to rotation matrices.



    Args:

        euler_angles: Euler angles in radians as tensor of shape (..., 3).

        convention: Convention string of three uppercase letters from

            {"X", "Y", and "Z"}.



    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """
    if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
        raise ValueError("Invalid input euler angles.")
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    matrices = [
        _axis_angle_rotation(c, e)
        for c, e in zip(convention, torch.unbind(euler_angles, -1))
    ]
    # return functools.reduce(torch.matmul, matrices)
    
    rotation_matrices = torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
    
    rot = torch.zeros((rotation_matrices.shape[0], 4, 4)).to(device=rotation_matrices.device)

    rot[:, :3, :3] = rotation_matrices.squeeze()

    rot[:, 3, 3] = 1
    
    return rot

def _angle_from_tan(

    axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool

) -> torch.Tensor:
    """

    Extract the first or third Euler angle from the two members of

    the matrix which are positive constant times its sine and cosine.



    Args:

        axis: Axis label "X" or "Y or "Z" for the angle we are finding.

        other_axis: Axis label "X" or "Y or "Z" for the middle axis in the

            convention.

        data: Rotation matrices as tensor of shape (..., 3, 3).

        horizontal: Whether we are looking for the angle for the third axis,

            which means the relevant entries are in the same row of the

            rotation matrix. If not, they are in the same column.

        tait_bryan: Whether the first and third axes in the convention differ.



    Returns:

        Euler Angles in radians for each matrix in data as a tensor

        of shape (...).

    """

    i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
    if horizontal:
        i2, i1 = i1, i2
    even = (axis + other_axis) in ["XY", "YZ", "ZX"]
    if horizontal == even:
        return torch.atan2(data[..., i1], data[..., i2])
    if tait_bryan:
        return torch.atan2(-data[..., i2], data[..., i1])
    return torch.atan2(data[..., i2], -data[..., i1])

def matrix_2_euler_vector(matrix, convention = 'ZYX', roll = True):
    # matrix = matrix_in.copy()
    euler = (matrix_to_euler_angles(matrix[:, :3,:3], convention)) # to match with scipy euler = -euler and transpose of this 
    
    if roll:
        euler[0] = 0.0
    t = matrix[:, :3,3]

    out = torch.cat([euler, t], dim = 0)

    return out
    
def _index_from_letter(letter: str) -> int:
    if letter == "X":
        return 0
    if letter == "Y":
        return 1
    if letter == "Z":
        return 2
    raise ValueError("letter must be either X, Y or Z.")

def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor:
    """

    Convert rotations given as rotation matrices to Euler angles in radians.



    Args:

        matrix: Rotation matrices as tensor of shape (..., 3, 3).

        convention: Convention string of three uppercase letters.



    Returns:

        Euler angles in radians as tensor of shape (..., 3).

    """
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
    i0 = _index_from_letter(convention[0])
    i2 = _index_from_letter(convention[2])
    tait_bryan = i0 != i2
    if tait_bryan:
        central_angle = torch.asin(
            matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
        )
    else:
        central_angle = torch.acos(matrix[..., i0, i0])

    o = (
        _angle_from_tan(
            convention[0], convention[1], matrix[..., i2], False, tait_bryan
        ),
        central_angle,
        _angle_from_tan(
            convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
        ),
    )
    return torch.stack(o, -1)

def computeFID(real_images, fake_images, fid_criterion):
    # metric = FrechetInceptionDistance(feature)
    fid_criterion.update(real_images, real=True)
    fid_criterion.update(fake_images, real=False)
    return fid_criterion.compute()
    

class SLlog(nn.Module):
    def __init__(self):
        super(SLlog, self).__init__()
    
    def forward(self, fake1, real1):
        if not fake1.shape == real1.shape:
            _,_,H,W = real1.shape
            fake = F.upsample(fake, size=(H,W), mode='bilinear')
            
        # filter out invalid pixels
        real = real1.clone()
        fake = fake1.clone()
        N = (real>0).float().sum()
        mask1 = (real<=0)
        mask2 = (fake<=0)      
        mask3 = mask1+mask2
        # mask = 1.0 - (mask3>0).float()  
        mask = (mask3>0)
        fake[mask] = 1.
        real[mask] = 1.
        
        loss_ = torch.log(real)-torch.log(fake)
        loss = torch.sqrt((torch.sum( loss_ ** 2) / N ) - ((torch.sum(loss_)/N)**2))
        # loss = 100.* torch.sum( torch.abs(torch.log(real)-torch.log(fake)) ) / N
        return loss

class RMSE_log(nn.Module):
    def __init__(self, use_cuda):
        super(RMSE_log, self).__init__()
        self.eps = 1e-8
        self.use_cuda = use_cuda
    
    def forward(self, fake, real):
        mask = real<1.
        n,_,h,w = real.size()
        fake = F.upsample(fake, size=(h,w), mode='bilinear')
        fake += self.eps

        N = len(real[mask])
        loss = torch.sqrt( torch.sum( torch.abs(torch.log(real[mask])-torch.log(fake[mask])) ** 2 ) / N )
        return loss

def depth_to_disp(depth, min_disp=0.00001, max_disp = 1.000001):
    """Convert network's sigmoid output into depth prediction

    The formula for this conversion is given in the 'additional considerations'

    section of the paper.

    """
    min_depth = 1 / max_disp
    max_depth = 1 / min_disp
    scaled_depth = min_depth + (max_depth - min_depth) * depth
    disp = 1 / scaled_depth
    return scaled_depth, disp

def disp_to_depth(disp, min_depth, max_depth):
    """Convert network's sigmoid output into depth prediction

    The formula for this conversion is given in the 'additional considerations'

    section of the paper.

    """
    min_disp = 1 / max_depth
    max_disp = 1 / min_depth
    scaled_disp = min_disp + (max_disp - min_disp) * disp
    depth = 1 / scaled_disp
    return scaled_disp, depth

def disp_to_depth_no_scaling(disp):
    """Convert network's sigmoid output into depth prediction

    The formula for this conversion is given in the 'additional considerations'

    section of the paper.

    """
    depth = 1 / (disp + 1e-7)
    return depth


def transformation_from_parameters(axisangle, translation, invert=False):
    """Convert the network's (axisangle, translation) output into a 4x4 matrix

    """
    
    R = rot_from_axisangle(axisangle)
    t = translation.clone()

    if invert:
        R = R.transpose(1, 2) # uncomment beore running
        t *= -1 

    T = get_translation_matrix(t)

    if invert:
        M = torch.matmul(R, T)
    else:
        M = torch.matmul(T, R)

    return M

def transformation_from_parameters_euler(euler, translation, invert=False):
    """Convert the network's (axisangle, translation) output into a 4x4 matrix

    """
    # R = torch.transpose(euler_angles_to_matrix(euler, 'ZYX'), 0, 1).permute(1, 0, 2) # to match with scipy euler = -euler and transpose of this 
    R = euler_angles_to_matrix(euler, 'ZYX') # to match with scipy euler = -euler and transpose of this 
    t = translation.clone()

    if invert:
        R = R.transpose(1, 2)
        t *= -1

    T = get_translation_matrix(t)

    if invert:
        M = torch.matmul(R, T)
    else:
        M = torch.matmul(T, R)

    return M

def get_translation_matrix(translation_vector):
    """Convert a translation vector into a 4x4 transformation matrix

    """
    T = torch.zeros(translation_vector.shape[0], 4, 4).to(device=translation_vector.device)

    t = translation_vector.contiguous().view(-1, 3, 1)

    T[:, 0, 0] = 1
    T[:, 1, 1] = 1
    T[:, 2, 2] = 1
    T[:, 3, 3] = 1
    T[:, :3, 3, None] = t

    return T



def rot_from_euler(vec):
    
    rot = R.from_euler('zyx', vec, degrees=True)
    return 

def rot_from_axisangle(vec):
    """Convert an axisangle rotation into a 4x4 transformation matrix

    (adapted from https://github.com/Wallacoloo/printipi)

    Input 'vec' has to be Bx1x3

    """
    angle = torch.norm(vec, 2, 2, True)
    axis = vec / (angle + 1e-7)

    ca = torch.cos(angle)
    sa = torch.sin(angle)
    C = 1 - ca

    x = axis[..., 0].unsqueeze(1)
    y = axis[..., 1].unsqueeze(1)
    z = axis[..., 2].unsqueeze(1)

    xs = x * sa
    ys = y * sa
    zs = z * sa
    xC = x * C
    yC = y * C
    zC = z * C
    xyC = x * yC
    yzC = y * zC
    zxC = z * xC

    rot = torch.zeros((vec.shape[0], 4, 4)).to(device=vec.device)

    rot[:, 0, 0] = torch.squeeze(x * xC + ca)
    rot[:, 0, 1] = torch.squeeze(xyC - zs)
    rot[:, 0, 2] = torch.squeeze(zxC + ys)
    rot[:, 1, 0] = torch.squeeze(xyC + zs)
    rot[:, 1, 1] = torch.squeeze(y * yC + ca)
    rot[:, 1, 2] = torch.squeeze(yzC - xs)
    rot[:, 2, 0] = torch.squeeze(zxC - ys)
    rot[:, 2, 1] = torch.squeeze(yzC + xs)
    rot[:, 2, 2] = torch.squeeze(z * zC + ca)
    rot[:, 3, 3] = 1

    return rot


class ConvBlock(nn.Module):
    """Layer to perform a convolution followed by ELU

    """
    def __init__(self, in_channels, out_channels):
        super(ConvBlock, self).__init__()

        self.conv = Conv3x3(in_channels, out_channels)
        self.nonlin = nn.ELU(inplace=True)

    def forward(self, x):
        out = self.conv(x)
        out = self.nonlin(out)
        return out

def batchNorm(num_ch_dec):
    return nn.BatchNorm2d(num_ch_dec)

class Conv3x3(nn.Module):
    """Layer to pad and convolve input

    """
    def __init__(self, in_channels, out_channels, use_refl=True):
        super(Conv3x3, self).__init__()

        if use_refl:
            self.pad = nn.ReflectionPad2d(1)
        else:
            self.pad = nn.ZeroPad2d(1)
        self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)

    def forward(self, x):
        out = self.pad(x)
        out = self.conv(out)
        return out


class BackprojectDepth(nn.Module):
    """Layer to transform a depth image into a point cloud

    """
    def __init__(self, batch_size, height, width):
        super(BackprojectDepth, self).__init__()

        self.batch_size = batch_size
        self.height = height
        self.width = width

        meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
        self.id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
        self.id_coords = nn.Parameter(torch.from_numpy(self.id_coords),
                                      requires_grad=False)

        self.ones = nn.Parameter(torch.ones(self.batch_size, 1, self.height * self.width),
                                 requires_grad=False)

        self.pix_coords = torch.unsqueeze(torch.stack(
            [self.id_coords[0].view(-1), self.id_coords[1].view(-1)], 0), 0)
        self.pix_coords = self.pix_coords.repeat(batch_size, 1, 1)
        self.pix_coords = nn.Parameter(torch.cat([self.pix_coords, self.ones], 1),
                                       requires_grad=False)

    def forward(self, depth, inv_K):
        cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords)
        cam_points = depth.view(self.batch_size, 1, -1) * cam_points
        cam_points = torch.cat([cam_points, self.ones], 1)

        return cam_points


class Project3D(nn.Module):
    """Layer which projects 3D points into a camera with intrinsics K and at position T

    """
    def __init__(self, batch_size, height, width, eps=1e-7):
        super(Project3D, self).__init__()

        self.batch_size = batch_size
        self.height = height
        self.width = width
        self.eps = eps

    def forward(self, points, K, T):
        P = torch.matmul(K, T)[:, :3, :]

        cam_points = torch.matmul(P, points)

        pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
        pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
        pix_coords = pix_coords.permute(0, 2, 3, 1)
        pix_coords[..., 0] /= self.width - 1
        pix_coords[..., 1] /= self.height - 1
        pix_coords = (pix_coords - 0.5) * 2
        return pix_coords


def upsample(x):
    """Upsample input tensor by a factor of 2

    """
    return F.interpolate(x, scale_factor=2, mode="nearest")

class deconv(nn.Module):
    """Layer to perform a convolution followed by ELU

    """
    def __init__(self, ch_in, ch_out):
        super(deconv, self).__init__()

        self.deconvlayer = nn.ConvTranspose2d(ch_in, ch_out, 3, stride=2, padding=1)
        
    def forward(self, x):
        out = self.deconvlayer(x)
        return out


def get_smooth_loss_gauss_mask(disp, img, gauss_mask):
    """Computes the smoothness loss for a disparity image

    The color image is used for edge-aware smoothness

    """
    grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
    grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])

    # weighted mean
    # grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:])*gauss_mask[:, :, :, :-1], 1, keepdim=True)
    # grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :])*gauss_mask[:, :, :-1, :], 1, keepdim=True)
    
    grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
    grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)

    grad_disp_x *= torch.exp(-grad_img_x)
    grad_disp_y *= torch.exp(-grad_img_y)

    
    # take weighted mean 
    grad_disp_x*=gauss_mask[:, :, :, :-1]
    grad_disp_y*=gauss_mask[:, :, :-1, :]
    
    return grad_disp_x.mean() + grad_disp_y.mean()

def get_smooth_loss(disp, img):
    """Computes the smoothness loss for a disparity image

    The color image is used for edge-aware smoothness

    """
    grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
    grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])

    grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
    grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)

    grad_disp_x *= torch.exp(-grad_img_x)
    grad_disp_y *= torch.exp(-grad_img_y)

    return grad_disp_x.mean() + grad_disp_y.mean()


class SSIM(nn.Module):
    """Layer to compute the SSIM loss between a pair of images

    """
    def __init__(self):
        super(SSIM, self).__init__()
        self.mu_x_pool   = nn.AvgPool2d(3, 1)
        self.mu_y_pool   = nn.AvgPool2d(3, 1)
        self.sig_x_pool  = nn.AvgPool2d(3, 1)
        self.sig_y_pool  = nn.AvgPool2d(3, 1)
        self.sig_xy_pool = nn.AvgPool2d(3, 1)

        self.refl = nn.ReflectionPad2d(1)

        self.C1 = 0.01 ** 2
        self.C2 = 0.03 ** 2

    def forward(self, x, y):
        x = self.refl(x)
        y = self.refl(y)

        mu_x = self.mu_x_pool(x)
        mu_y = self.mu_y_pool(y)

        sigma_x  = self.sig_x_pool(x ** 2) - mu_x ** 2
        sigma_y  = self.sig_y_pool(y ** 2) - mu_y ** 2
        sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y

        SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
        SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2)

        return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)


def compute_depth_errors(gt, pred):
    """Computation of error metrics between predicted and ground truth depths

    """
    thresh = torch.max((gt / pred), (pred / gt))
    a1 = (thresh < 1.25     ).float().mean()
    a2 = (thresh < 1.25 ** 2).float().mean()
    a3 = (thresh < 1.25 ** 3).float().mean()

    rmse = (gt - pred) ** 2
    rmse = torch.sqrt(rmse.mean())

    rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
    rmse_log = torch.sqrt(rmse_log.mean())

    abs_rel = torch.mean(torch.abs(gt - pred) / gt)

    sq_rel = torch.mean((gt - pred) ** 2 / gt)

    return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3


""" Parts of the U-Net model """
class InstanceNormDoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.InstanceNorm2d(mid_channels, affine = True),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)

class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)

class DoubleConvIN(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.InstanceNorm2d(mid_channels,affine = True).to('cuda'),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.InstanceNorm2d(out_channels,affine = True).to('cuda'),
            nn.ReLU(inplace=True))

    def forward(self, x):
        return self.double_conv(x)

class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)

class DownIN(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConvIN(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)

class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)

    
class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)


class UpIN(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConvIN(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConvIN(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)



# def gaussian_fn(M, std):
#     n = torch.arange(0, M) - (M - 1.0) / 2.0
#     sig2 = 2 * std * std
#     w = torch.exp(-n ** 2 / sig2)
#     return w

# def gkern(kernlen=256, std=128):
#     """Returns a 2D Gaussian kernel array."""
#     gkern1d = gaussian_fn(kernlen, std=std) 
#     gkern2d = torch.outer(gkern1d, gkern1d)
#     return gkern2d

# A = np.random.rand(256*256).reshape([256,256])
# A = torch.from_numpy(A)
# guassian_filter = gkern(256, std=32)


# class GaussianLayer(nn.Module):
#     def __init__(self):
#         super(GaussianLayer, self).__init__()
#         self.seq = nn.Sequential(
#             nn.ReflectionPad2d(10), 
#             nn.Conv2d(3, 3, 21, stride=1, padding=0, bias=None, groups=3)
#         )

#         self.weights_init()
        
#     def forward(self, x):
#         return self.seq(x)

#     def weights_init(self):
#         n= np.zeros((21,21))
#         n[10,10] = 1
#         k = scipy.ndimage.gaussian_filter(n,sigma=3)
#         for name, f in self.named_parameters():
#             f.data.copy_(torch.from_numpy(k))