Spaces:
Sleeping
Sleeping
File size: 33,201 Bytes
e015760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import numpy as np
from scipy.spatial.transform import Rotation as R
import torch
import torch.nn as nn
import torch.nn.functional as F
# from torchmetrics.image.fid import FrechetInceptionDistance
# def silog(real1, fake1):
# # filter out invalid pixels
# real = real1.clone()
# fake = fake1.clone()
# N = (real>0).float().sum()
# mask1 = (real<=0)
# mask2 = (fake<=0)
# mask3 = mask1+mask2
# # mask = 1.0 - (mask3>0).float()
# mask = (mask3>0)
# fake[mask] = 1.
# real[mask] = 1.
# loss_ = torch.log(real)-torch.log(fake)
# loss = torch.sqrt((torch.sum( loss_ ** 2) / N ) - ((torch.sum(loss_)/N)**2))
# return loss
class SpatialTransformer(nn.Module):
def __init__(self, size, mode='bilinear'):
"""
Instiantiate the block
:param size: size of input to the spatial transformer block
:param mode: method of interpolation for grid_sampler
"""
super(SpatialTransformer, self).__init__()
# Create sampling grid
vectors = [torch.arange(0, s) for s in size]
grids = torch.meshgrid(vectors)
grid = torch.stack(grids) # y, x, z
grid = torch.unsqueeze(grid, 0) # add batch
grid = grid.type(torch.FloatTensor)
self.register_buffer('grid', grid)
self.mode = mode
def forward(self, src, flow):
"""
Push the src and flow through the spatial transform block
:param src: the source image
:param flow: the output from the U-Net
"""
new_locs = self.grid + flow
shape = flow.shape[2:]
# Need to normalize grid values to [-1, 1] for resampler
for i in range(len(shape)):
new_locs[:, i, ...] = 2*(new_locs[:, i, ...]/(shape[i]-1) - 0.5)
if len(shape) == 2:
new_locs = new_locs.permute(0, 2, 3, 1)
new_locs = new_locs[..., [1, 0]]
elif len(shape) == 3:
new_locs = new_locs.permute(0, 2, 3, 4, 1)
new_locs = new_locs[..., [2, 1, 0]]
return F.grid_sample(src, new_locs, mode=self.mode, padding_mode="border")
class optical_flow(nn.Module):
def __init__(self, size, batch_size, height, width, eps=1e-7):
super(optical_flow, self).__init__()
# Create sampling grid
vectors = [torch.arange(0, s) for s in size]
grids = torch.meshgrid(vectors)
grid = torch.stack(grids) # y, x, z
grid = torch.unsqueeze(grid, 0) # add batch
grid = grid.type(torch.FloatTensor)
self.register_buffer('grid', grid)
self.batch_size = batch_size
self.height = height
self.width = width
self.eps = eps
def forward(self, points, K, T):
P = torch.matmul(K, T)[:, :3, :]
cam_points = torch.matmul(P, points)
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
optical_flow = pix_coords[:, [1,0], ...] - self.grid
return optical_flow
def get_corresponding_map(data):
"""
:param data: unnormalized coordinates Bx2xHxW
:return: Bx1xHxW
"""
B, _, H, W = data.size()
# x = data[:, 0, :, :].view(B, -1).clamp(0, W - 1) # BxN (N=H*W)
# y = data[:, 1, :, :].view(B, -1).clamp(0, H - 1)
x = data[:, 0, :, :].view(B, -1) # BxN (N=H*W)
y = data[:, 1, :, :].view(B, -1)
# invalid = (x < 0) | (x > W - 1) | (y < 0) | (y > H - 1) # BxN
# invalid = invalid.repeat([1, 4])
x1 = torch.floor(x)
x_floor = x1.clamp(0, W - 1)
y1 = torch.floor(y)
y_floor = y1.clamp(0, H - 1)
x0 = x1 + 1
x_ceil = x0.clamp(0, W - 1)
y0 = y1 + 1
y_ceil = y0.clamp(0, H - 1)
x_ceil_out = x0 != x_ceil
y_ceil_out = y0 != y_ceil
x_floor_out = x1 != x_floor
y_floor_out = y1 != y_floor
invalid = torch.cat([x_ceil_out | y_ceil_out,
x_ceil_out | y_floor_out,
x_floor_out | y_ceil_out,
x_floor_out | y_floor_out], dim=1)
# encode coordinates, since the scatter function can only index along one axis
corresponding_map = torch.zeros(B, H * W).type_as(data)
indices = torch.cat([x_ceil + y_ceil * W,
x_ceil + y_floor * W,
x_floor + y_ceil * W,
x_floor + y_floor * W], 1).long() # BxN (N=4*H*W)
values = torch.cat([(1 - torch.abs(x - x_ceil)) * (1 - torch.abs(y - y_ceil)),
(1 - torch.abs(x - x_ceil)) * (1 - torch.abs(y - y_floor)),
(1 - torch.abs(x - x_floor)) * (1 - torch.abs(y - y_ceil)),
(1 - torch.abs(x - x_floor)) * (1 - torch.abs(y - y_floor))],
1)
# values = torch.ones_like(values)
values[invalid] = 0
corresponding_map.scatter_add_(1, indices, values)
# decode coordinates
corresponding_map = corresponding_map.view(B, H, W)
return corresponding_map.unsqueeze(1)
class get_occu_mask_backward(nn.Module):
def __init__(self, size):
super(get_occu_mask_backward, self).__init__()
# Create sampling grid
vectors = [torch.arange(0, s) for s in size]
grids = torch.meshgrid(vectors)
grid = torch.stack(grids) # y, x, z
grid = torch.unsqueeze(grid, 0) # add batch
grid = grid.type(torch.FloatTensor)
self.register_buffer('grid', grid)
def forward(self, flow, th=0.95):
new_locs = self.grid + flow
new_locs = new_locs[:, [1,0], ...]
corr_map = get_corresponding_map(new_locs)
occu_map = corr_map
occu_mask = (occu_map > th).float()
return occu_mask, occu_map
class get_occu_mask_bidirection(nn.Module):
def __init__(self, size, mode='bilinear'):
super(get_occu_mask_bidirection, self).__init__()
# Create sampling grid
vectors = [torch.arange(0, s) for s in size]
grids = torch.meshgrid(vectors)
grid = torch.stack(grids) # y, x, z
grid = torch.unsqueeze(grid, 0) # add batch
grid = grid.type(torch.FloatTensor)
self.register_buffer('grid', grid)
self.mode = mode
def forward(self, flow12, flow21, scale=0.01, bias=0.5):
new_locs = self.grid + flow12
shape = flow12.shape[2:]
# Need to normalize grid values to [-1, 1] for resampler
for i in range(len(shape)):
new_locs[:, i, ...] = 2*(new_locs[:, i, ...]/(shape[i]-1) - 0.5)
if len(shape) == 2:
new_locs = new_locs.permute(0, 2, 3, 1)
new_locs = new_locs[..., [1, 0]]
elif len(shape) == 3:
new_locs = new_locs.permute(0, 2, 3, 4, 1)
new_locs = new_locs[..., [2, 1, 0]]
flow21_warped = F.grid_sample(flow21, new_locs, mode=self.mode, padding_mode="border")
flow12_diff = torch.abs(flow12 + flow21_warped)
# mag = (flow12 * flow12).sum(1, keepdim=True) + \
# (flow21_warped * flow21_warped).sum(1, keepdim=True)
# occ_thresh = scale * mag + bias
# occ_mask = (flow12_diff * flow12_diff).sum(1, keepdim=True) < occ_thresh
return flow12_diff
# functions
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as tensor of shape (..., 3).
convention: Convention string of three uppercase letters from
{"X", "Y", and "Z"}.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
_axis_angle_rotation(c, e)
for c, e in zip(convention, torch.unbind(euler_angles, -1))
]
# return functools.reduce(torch.matmul, matrices)
rotation_matrices = torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
rot = torch.zeros((rotation_matrices.shape[0], 4, 4)).to(device=rotation_matrices.device)
rot[:, :3, :3] = rotation_matrices.squeeze()
rot[:, 3, 3] = 1
return rot
def _angle_from_tan(
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
) -> torch.Tensor:
"""
Extract the first or third Euler angle from the two members of
the matrix which are positive constant times its sine and cosine.
Args:
axis: Axis label "X" or "Y or "Z" for the angle we are finding.
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the
convention.
data: Rotation matrices as tensor of shape (..., 3, 3).
horizontal: Whether we are looking for the angle for the third axis,
which means the relevant entries are in the same row of the
rotation matrix. If not, they are in the same column.
tait_bryan: Whether the first and third axes in the convention differ.
Returns:
Euler Angles in radians for each matrix in data as a tensor
of shape (...).
"""
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
if horizontal:
i2, i1 = i1, i2
even = (axis + other_axis) in ["XY", "YZ", "ZX"]
if horizontal == even:
return torch.atan2(data[..., i1], data[..., i2])
if tait_bryan:
return torch.atan2(-data[..., i2], data[..., i1])
return torch.atan2(data[..., i2], -data[..., i1])
def matrix_2_euler_vector(matrix, convention = 'ZYX', roll = True):
# matrix = matrix_in.copy()
euler = (matrix_to_euler_angles(matrix[:, :3,:3], convention)) # to match with scipy euler = -euler and transpose of this
if roll:
euler[0] = 0.0
t = matrix[:, :3,3]
out = torch.cat([euler, t], dim = 0)
return out
def _index_from_letter(letter: str) -> int:
if letter == "X":
return 0
if letter == "Y":
return 1
if letter == "Z":
return 2
raise ValueError("letter must be either X, Y or Z.")
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to Euler angles in radians.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
convention: Convention string of three uppercase letters.
Returns:
Euler angles in radians as tensor of shape (..., 3).
"""
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
i0 = _index_from_letter(convention[0])
i2 = _index_from_letter(convention[2])
tait_bryan = i0 != i2
if tait_bryan:
central_angle = torch.asin(
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
)
else:
central_angle = torch.acos(matrix[..., i0, i0])
o = (
_angle_from_tan(
convention[0], convention[1], matrix[..., i2], False, tait_bryan
),
central_angle,
_angle_from_tan(
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
),
)
return torch.stack(o, -1)
def computeFID(real_images, fake_images, fid_criterion):
# metric = FrechetInceptionDistance(feature)
fid_criterion.update(real_images, real=True)
fid_criterion.update(fake_images, real=False)
return fid_criterion.compute()
class SLlog(nn.Module):
def __init__(self):
super(SLlog, self).__init__()
def forward(self, fake1, real1):
if not fake1.shape == real1.shape:
_,_,H,W = real1.shape
fake = F.upsample(fake, size=(H,W), mode='bilinear')
# filter out invalid pixels
real = real1.clone()
fake = fake1.clone()
N = (real>0).float().sum()
mask1 = (real<=0)
mask2 = (fake<=0)
mask3 = mask1+mask2
# mask = 1.0 - (mask3>0).float()
mask = (mask3>0)
fake[mask] = 1.
real[mask] = 1.
loss_ = torch.log(real)-torch.log(fake)
loss = torch.sqrt((torch.sum( loss_ ** 2) / N ) - ((torch.sum(loss_)/N)**2))
# loss = 100.* torch.sum( torch.abs(torch.log(real)-torch.log(fake)) ) / N
return loss
class RMSE_log(nn.Module):
def __init__(self, use_cuda):
super(RMSE_log, self).__init__()
self.eps = 1e-8
self.use_cuda = use_cuda
def forward(self, fake, real):
mask = real<1.
n,_,h,w = real.size()
fake = F.upsample(fake, size=(h,w), mode='bilinear')
fake += self.eps
N = len(real[mask])
loss = torch.sqrt( torch.sum( torch.abs(torch.log(real[mask])-torch.log(fake[mask])) ** 2 ) / N )
return loss
def depth_to_disp(depth, min_disp=0.00001, max_disp = 1.000001):
"""Convert network's sigmoid output into depth prediction
The formula for this conversion is given in the 'additional considerations'
section of the paper.
"""
min_depth = 1 / max_disp
max_depth = 1 / min_disp
scaled_depth = min_depth + (max_depth - min_depth) * depth
disp = 1 / scaled_depth
return scaled_depth, disp
def disp_to_depth(disp, min_depth, max_depth):
"""Convert network's sigmoid output into depth prediction
The formula for this conversion is given in the 'additional considerations'
section of the paper.
"""
min_disp = 1 / max_depth
max_disp = 1 / min_depth
scaled_disp = min_disp + (max_disp - min_disp) * disp
depth = 1 / scaled_disp
return scaled_disp, depth
def disp_to_depth_no_scaling(disp):
"""Convert network's sigmoid output into depth prediction
The formula for this conversion is given in the 'additional considerations'
section of the paper.
"""
depth = 1 / (disp + 1e-7)
return depth
def transformation_from_parameters(axisangle, translation, invert=False):
"""Convert the network's (axisangle, translation) output into a 4x4 matrix
"""
R = rot_from_axisangle(axisangle)
t = translation.clone()
if invert:
R = R.transpose(1, 2) # uncomment beore running
t *= -1
T = get_translation_matrix(t)
if invert:
M = torch.matmul(R, T)
else:
M = torch.matmul(T, R)
return M
def transformation_from_parameters_euler(euler, translation, invert=False):
"""Convert the network's (axisangle, translation) output into a 4x4 matrix
"""
# R = torch.transpose(euler_angles_to_matrix(euler, 'ZYX'), 0, 1).permute(1, 0, 2) # to match with scipy euler = -euler and transpose of this
R = euler_angles_to_matrix(euler, 'ZYX') # to match with scipy euler = -euler and transpose of this
t = translation.clone()
if invert:
R = R.transpose(1, 2)
t *= -1
T = get_translation_matrix(t)
if invert:
M = torch.matmul(R, T)
else:
M = torch.matmul(T, R)
return M
def get_translation_matrix(translation_vector):
"""Convert a translation vector into a 4x4 transformation matrix
"""
T = torch.zeros(translation_vector.shape[0], 4, 4).to(device=translation_vector.device)
t = translation_vector.contiguous().view(-1, 3, 1)
T[:, 0, 0] = 1
T[:, 1, 1] = 1
T[:, 2, 2] = 1
T[:, 3, 3] = 1
T[:, :3, 3, None] = t
return T
def rot_from_euler(vec):
rot = R.from_euler('zyx', vec, degrees=True)
return
def rot_from_axisangle(vec):
"""Convert an axisangle rotation into a 4x4 transformation matrix
(adapted from https://github.com/Wallacoloo/printipi)
Input 'vec' has to be Bx1x3
"""
angle = torch.norm(vec, 2, 2, True)
axis = vec / (angle + 1e-7)
ca = torch.cos(angle)
sa = torch.sin(angle)
C = 1 - ca
x = axis[..., 0].unsqueeze(1)
y = axis[..., 1].unsqueeze(1)
z = axis[..., 2].unsqueeze(1)
xs = x * sa
ys = y * sa
zs = z * sa
xC = x * C
yC = y * C
zC = z * C
xyC = x * yC
yzC = y * zC
zxC = z * xC
rot = torch.zeros((vec.shape[0], 4, 4)).to(device=vec.device)
rot[:, 0, 0] = torch.squeeze(x * xC + ca)
rot[:, 0, 1] = torch.squeeze(xyC - zs)
rot[:, 0, 2] = torch.squeeze(zxC + ys)
rot[:, 1, 0] = torch.squeeze(xyC + zs)
rot[:, 1, 1] = torch.squeeze(y * yC + ca)
rot[:, 1, 2] = torch.squeeze(yzC - xs)
rot[:, 2, 0] = torch.squeeze(zxC - ys)
rot[:, 2, 1] = torch.squeeze(yzC + xs)
rot[:, 2, 2] = torch.squeeze(z * zC + ca)
rot[:, 3, 3] = 1
return rot
class ConvBlock(nn.Module):
"""Layer to perform a convolution followed by ELU
"""
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = Conv3x3(in_channels, out_channels)
self.nonlin = nn.ELU(inplace=True)
def forward(self, x):
out = self.conv(x)
out = self.nonlin(out)
return out
def batchNorm(num_ch_dec):
return nn.BatchNorm2d(num_ch_dec)
class Conv3x3(nn.Module):
"""Layer to pad and convolve input
"""
def __init__(self, in_channels, out_channels, use_refl=True):
super(Conv3x3, self).__init__()
if use_refl:
self.pad = nn.ReflectionPad2d(1)
else:
self.pad = nn.ZeroPad2d(1)
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)
def forward(self, x):
out = self.pad(x)
out = self.conv(out)
return out
class BackprojectDepth(nn.Module):
"""Layer to transform a depth image into a point cloud
"""
def __init__(self, batch_size, height, width):
super(BackprojectDepth, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
self.id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
self.id_coords = nn.Parameter(torch.from_numpy(self.id_coords),
requires_grad=False)
self.ones = nn.Parameter(torch.ones(self.batch_size, 1, self.height * self.width),
requires_grad=False)
self.pix_coords = torch.unsqueeze(torch.stack(
[self.id_coords[0].view(-1), self.id_coords[1].view(-1)], 0), 0)
self.pix_coords = self.pix_coords.repeat(batch_size, 1, 1)
self.pix_coords = nn.Parameter(torch.cat([self.pix_coords, self.ones], 1),
requires_grad=False)
def forward(self, depth, inv_K):
cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords)
cam_points = depth.view(self.batch_size, 1, -1) * cam_points
cam_points = torch.cat([cam_points, self.ones], 1)
return cam_points
class Project3D(nn.Module):
"""Layer which projects 3D points into a camera with intrinsics K and at position T
"""
def __init__(self, batch_size, height, width, eps=1e-7):
super(Project3D, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
self.eps = eps
def forward(self, points, K, T):
P = torch.matmul(K, T)[:, :3, :]
cam_points = torch.matmul(P, points)
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
pix_coords = pix_coords.permute(0, 2, 3, 1)
pix_coords[..., 0] /= self.width - 1
pix_coords[..., 1] /= self.height - 1
pix_coords = (pix_coords - 0.5) * 2
return pix_coords
def upsample(x):
"""Upsample input tensor by a factor of 2
"""
return F.interpolate(x, scale_factor=2, mode="nearest")
class deconv(nn.Module):
"""Layer to perform a convolution followed by ELU
"""
def __init__(self, ch_in, ch_out):
super(deconv, self).__init__()
self.deconvlayer = nn.ConvTranspose2d(ch_in, ch_out, 3, stride=2, padding=1)
def forward(self, x):
out = self.deconvlayer(x)
return out
def get_smooth_loss_gauss_mask(disp, img, gauss_mask):
"""Computes the smoothness loss for a disparity image
The color image is used for edge-aware smoothness
"""
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
# weighted mean
# grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:])*gauss_mask[:, :, :, :-1], 1, keepdim=True)
# grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :])*gauss_mask[:, :, :-1, :], 1, keepdim=True)
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
grad_disp_x *= torch.exp(-grad_img_x)
grad_disp_y *= torch.exp(-grad_img_y)
# take weighted mean
grad_disp_x*=gauss_mask[:, :, :, :-1]
grad_disp_y*=gauss_mask[:, :, :-1, :]
return grad_disp_x.mean() + grad_disp_y.mean()
def get_smooth_loss(disp, img):
"""Computes the smoothness loss for a disparity image
The color image is used for edge-aware smoothness
"""
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
grad_disp_x *= torch.exp(-grad_img_x)
grad_disp_y *= torch.exp(-grad_img_y)
return grad_disp_x.mean() + grad_disp_y.mean()
class SSIM(nn.Module):
"""Layer to compute the SSIM loss between a pair of images
"""
def __init__(self):
super(SSIM, self).__init__()
self.mu_x_pool = nn.AvgPool2d(3, 1)
self.mu_y_pool = nn.AvgPool2d(3, 1)
self.sig_x_pool = nn.AvgPool2d(3, 1)
self.sig_y_pool = nn.AvgPool2d(3, 1)
self.sig_xy_pool = nn.AvgPool2d(3, 1)
self.refl = nn.ReflectionPad2d(1)
self.C1 = 0.01 ** 2
self.C2 = 0.03 ** 2
def forward(self, x, y):
x = self.refl(x)
y = self.refl(y)
mu_x = self.mu_x_pool(x)
mu_y = self.mu_y_pool(y)
sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2
sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2
sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y
SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2)
return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)
def compute_depth_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
thresh = torch.max((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).float().mean()
a2 = (thresh < 1.25 ** 2).float().mean()
a3 = (thresh < 1.25 ** 3).float().mean()
rmse = (gt - pred) ** 2
rmse = torch.sqrt(rmse.mean())
rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
rmse_log = torch.sqrt(rmse_log.mean())
abs_rel = torch.mean(torch.abs(gt - pred) / gt)
sq_rel = torch.mean((gt - pred) ** 2 / gt)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
""" Parts of the U-Net model """
class InstanceNormDoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(mid_channels, affine = True),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class DoubleConvIN(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(mid_channels,affine = True).to('cuda'),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(out_channels,affine = True).to('cuda'),
nn.ReLU(inplace=True))
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class DownIN(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConvIN(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UpIN(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConvIN(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConvIN(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
# def gaussian_fn(M, std):
# n = torch.arange(0, M) - (M - 1.0) / 2.0
# sig2 = 2 * std * std
# w = torch.exp(-n ** 2 / sig2)
# return w
# def gkern(kernlen=256, std=128):
# """Returns a 2D Gaussian kernel array."""
# gkern1d = gaussian_fn(kernlen, std=std)
# gkern2d = torch.outer(gkern1d, gkern1d)
# return gkern2d
# A = np.random.rand(256*256).reshape([256,256])
# A = torch.from_numpy(A)
# guassian_filter = gkern(256, std=32)
# class GaussianLayer(nn.Module):
# def __init__(self):
# super(GaussianLayer, self).__init__()
# self.seq = nn.Sequential(
# nn.ReflectionPad2d(10),
# nn.Conv2d(3, 3, 21, stride=1, padding=0, bias=None, groups=3)
# )
# self.weights_init()
# def forward(self, x):
# return self.seq(x)
# def weights_init(self):
# n= np.zeros((21,21))
# n[10,10] = 1
# k = scipy.ndimage.gaussian_filter(n,sigma=3)
# for name, f in self.named_parameters():
# f.data.copy_(torch.from_numpy(k))
|