Spaces:
Runtime error
Runtime error
File size: 1,232 Bytes
979d372 5f11407 979d372 5f11407 979d372 5f11407 979d372 5f11407 979d372 5f11407 979d372 5f11407 979d372 5f11407 979d372 5f11407 979d372 cd79592 5f11407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import pyttsx3
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import whisper
# Load text-generation model
model_name = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Initialize Text-to-Speech
tts = pyttsx3.init()
tts.setProperty("rate", 150) # Adjust speech speed
# Load Whisper for speech recognition
whisper_model = whisper.load_model("small")
def live_chat(audio):
# Convert speech to text
result = whisper_model.transcribe(audio)
user_input = result["text"]
# Generate chatbot response
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
response_ids = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id)
bot_response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# Speak response
tts.say(bot_response)
tts.runAndWait()
return bot_response
# Gradio Interface
app = gr.Interface(
fn=live_chat,
inputs=gr.Audio(type="filepath"), # Microphone input
outputs="text",
live=True,
)
# Launch the app
app.launch()
|