Spaces:
Runtime error
Runtime error
File size: 7,326 Bytes
faca43f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import { MESSAGES_BEFORE_LOGIN, RATE_LIMIT } from "$env/static/private";
import { buildPrompt } from "$lib/buildPrompt";
import { PUBLIC_SEP_TOKEN } from "$lib/constants/publicSepToken";
import { abortedGenerations } from "$lib/server/abortedGenerations";
import { authCondition, requiresUser } from "$lib/server/auth";
import { collections } from "$lib/server/database";
import { modelEndpoint } from "$lib/server/modelEndpoint";
import { models } from "$lib/server/models";
import { ERROR_MESSAGES } from "$lib/stores/errors.js";
import type { Message } from "$lib/types/Message";
import { concatUint8Arrays } from "$lib/utils/concatUint8Arrays";
import { streamToAsyncIterable } from "$lib/utils/streamToAsyncIterable";
import { trimPrefix } from "$lib/utils/trimPrefix";
import { trimSuffix } from "$lib/utils/trimSuffix";
import type { TextGenerationStreamOutput } from "@huggingface/inference";
import { error } from "@sveltejs/kit";
import { z } from "zod";
import { AwsClient } from "aws4fetch";
import { pipeline } from "@xenova/transformers";
export async function POST({ request, fetch, locals, params }) {
/*const id = z.string().parse(params.id);
const date = new Date();
let generated_text = "";
const userId = locals.user?._id ?? locals.sessionId;
if (!userId) {
throw error(401, "Unauthorized");
}
const conv = await collections.conversations.findOne({
_id: convId,
...authCondition(locals),
});
if (!conv) {
throw error(404, "Conversation not found");
}
if (
!locals.user?._id &&
requiresUser &&
conv.messages.length > (MESSAGES_BEFORE_LOGIN ? parseInt(MESSAGES_BEFORE_LOGIN) : 0)
) {
throw error(429, "Exceeded number of messages before login");
}
const nEvents = await collections.messageEvents.countDocuments({ userId });
if (RATE_LIMIT != "" && nEvents > parseInt(RATE_LIMIT)) {
throw error(429, ERROR_MESSAGES.rateLimited);
}
const model = models.find((m) => m.id === conv.model);
const settings = await collections.settings.findOne(authCondition(locals));
if (!model) {
throw error(410, "Model not available anymore");
}
const json = await request.json();
const {
inputs: newPrompt,
options: { id: messageId, is_retry, web_search_id, response_id: responseId },
} = z
.object({
inputs: z.string().trim().min(1),
options: z.object({
id: z.optional(z.string().uuid()),
response_id: z.optional(z.string().uuid()),
is_retry: z.optional(z.boolean()),
web_search_id: z.ostring(),
}),
})
.parse(json);
const messages = (() => {
if (is_retry && messageId) {
let retryMessageIdx = conv.messages.findIndex((message) => message.id === messageId);
if (retryMessageIdx === -1) {
retryMessageIdx = conv.messages.length;
}
return [
...conv.messages.slice(0, retryMessageIdx),
{ content: newPrompt, from: "user", id: messageId as Message["id"], updatedAt: new Date() },
];
}
return [
...conv.messages,
{
content: newPrompt,
from: "user",
id: (messageId as Message["id"]) || crypto.randomUUID(),
createdAt: new Date(),
updatedAt: new Date(),
},
];
})() satisfies Message[];
const prompt = await buildPrompt({
messages,
model,
webSearchId: web_search_id,
preprompt: settings?.customPrompts?.[model.id] ?? model.preprompt,
locals: locals,
});
const randomEndpoint = modelEndpoint(model);
console.log(randomEndpoint);
const abortController = new AbortController();
let stream1 = new ReadableStream<Uint8Array>();
let stream2 = new ReadableStream<Uint8Array>();
async function saveMessage() {
// We could also check if PUBLIC_ASSISTANT_MESSAGE_TOKEN is present and use it to slice the text
if (generated_text.startsWith(prompt)) {
generated_text = generated_text.slice(prompt.length);
}
generated_text = trimSuffix(
trimPrefix(generated_text, "<|startoftext|>"),
PUBLIC_SEP_TOKEN
).trimEnd();
for (const stop of [...(model?.parameters?.stop ?? []), "<|endoftext|>"]) {
if (generated_text.endsWith(stop)) {
generated_text = generated_text.slice(0, -stop.length).trimEnd();
}
}
messages.push({
from: "assistant",
content: generated_text,
webSearchId: web_search_id,
id: (responseId as Message["id"]) || crypto.randomUUID(),
createdAt: new Date(),
updatedAt: new Date(),
});
await collections.messageEvents.insertOne({
userId: userId,
createdAt: new Date(),
});
await collections.conversations.updateOne(
{
_id: convId,
},
{
$set: {
messages,
updatedAt: new Date(),
},
}
);
}
saveMessage().catch(console.error);*/
// Todo: maybe we should wait for the message to be saved before ending the response - in case of errors
return new Response(undefined, {
headers: undefined,
status: 200,
statusText: "",
});
}
export async function DELETE({ locals, params }) {
/*const conv = await collections.conversations.findOne({
_id: convId,
...authCondition(locals),
});
await collections.conversations.deleteOne({ _id: conv._id });*/
return new Response();
}
async function parseGeneratedText(
stream: ReadableStream,
conversationId: ObjectId,
promptedAt: Date,
abortController: AbortController
): Promise<string> {
const inputs: Uint8Array[] = [];
for await (const input of streamToAsyncIterable(stream)) {
inputs.push(input);
const date = abortedGenerations.get(conversationId.toString());
if (date && date > promptedAt) {
abortController.abort("Cancelled by user");
const completeInput = concatUint8Arrays(inputs);
const lines = new TextDecoder()
.decode(completeInput)
.split("\n")
.filter((line) => line.startsWith("data:"));
const tokens = lines.map((line) => {
try {
const json: TextGenerationStreamOutput = JSON.parse(line.slice("data:".length));
return json.token.text;
} catch {
return "";
}
});
return tokens.join("");
}
}
// Merge inputs into a single Uint8Array
const completeInput = concatUint8Arrays(inputs);
// Get last line starting with "data:" and parse it as JSON to get the generated text
const message = new TextDecoder().decode(completeInput);
let lastIndex = message.lastIndexOf("\ndata:");
if (lastIndex === -1) {
lastIndex = message.indexOf("data");
}
if (lastIndex === -1) {
console.error("Could not parse last message", message);
}
let lastMessage = message.slice(lastIndex).trim().slice("data:".length);
if (lastMessage.includes("\n")) {
lastMessage = lastMessage.slice(0, lastMessage.indexOf("\n"));
}
const lastMessageJSON = JSON.parse(lastMessage);
if (lastMessageJSON.error) {
throw new Error(lastMessageJSON.error);
}
const res = lastMessageJSON.generated_text;
if (typeof res !== "string") {
throw new Error("Could not parse generated text");
}
return res;
}
export async function PATCH({ request, locals, params }) {
/*const { title } = z
.object({ title: z.string().trim().min(1).max(100) })
.parse(await request.json());
const convId = new ObjectId(params.id);
const conv = await collections.conversations.findOne({
_id: convId,
...authCondition(locals),
});
if (!conv) {
throw error(404, "Conversation not found");
}
await collections.conversations.updateOne(
{
_id: convId,
},
{
$set: {
title,
},
}
);*/
return new Response();
}
|