Spaces:
Runtime error
Runtime error
File size: 7,943 Bytes
b28391f de76c3a b28391f de76c3a b28391f de76c3a b28391f 20bb009 b28391f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import glob
import numpy as np
import pickle
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
import torchvision.transforms as T
from torchvision.utils import make_grid
# default image directory (training only)
img_path = '/home/alan/Projects/gen_dnd_art/filtered_images/im128/*pkl'
img_files = glob.glob(img_path)
# determine class names from image directory (training only)
'''
labels = np.array([i.split('/')[-1].split('_')[:3] for i in img_files])
species = np.unique(labels[:, 0]).tolist()
classes = np.unique(labels[:, 1]).tolist()
genders = np.unique(labels[:, 2]).tolist()
'''
# hard code class labels (for application)
species = ['dragonborn', 'dwarf', 'elf', 'gnome', 'halfling', 'human', 'orc', 'tiefling']
classes = [
'barbarian', 'bard', 'cleric', 'druid', 'fighter', 'monk',
'paladin','ranger', 'rogue', 'sorcerer', 'warlock', 'wizard'
]
genders = ['', 'female', 'male']
class ImSet(Dataset):
def __init__(self, img_path=img_path):
super().__init__()
self.img_files = glob.glob(img_path)
self.transform = T.Compose([
T.ToTensor(),
T.ColorJitter(0.1, 0.1, 0.1, 0.1),
T.RandomHorizontalFlip(),
# add random noise and clip
lambda x: torch.clip(torch.randn(x.shape) / 20 + x, 0, 1),
T.Normalize(0.5, 0.5)
])
def __len__(self):
return len(self.img_files)
def __getitem__(self, i):
img_file = self.img_files[i]
# load image
with open(img_file, 'rb') as fid:
img = pickle.load(fid)
# apply transforms
img = self.transform(img).float()
# extract class label
img_fname = img_file.split('/')[-1]
species_, class_, gender_, _, _ = img_fname.split('_')
species_ = species.index(species_)
class_ = classes.index(class_)
gender_ = genders.index(gender_)
return (img_fname, img, species_, class_, gender_)
class VariationalEncoder(nn.Module):
def __init__(self, input_channels=3, latent_size=2048):
super().__init__()
self.latent_size = latent_size
self.net = nn.Sequential(
# 128 -> 63
nn.Conv2d(input_channels, 8, 4, 2),
nn.LeakyReLU(0.2),
# 63 -> 31
nn.Conv2d(8, 16, 3, 2),
nn.LeakyReLU(0.2),
# 31 -> 15
nn.Conv2d(16, 32, 3, 2),
nn.LeakyReLU(0.2),
# 15 -> 7
nn.Conv2d(32, 64, 3, 2),
nn.LeakyReLU(0.2),
# 7 -> 5
nn.Conv2d(64, 128, 3, 1),
nn.LeakyReLU(0.2),
# 5 -> 4
nn.Conv2d(128, 256, 2, 1),
nn.LeakyReLU(0.2),
# 4 -> 3
nn.Conv2d(256, 512, 2, 1),
nn.LeakyReLU(0.2),
# 3 -> 2
nn.Conv2d(512, 1024, 2, 1),
nn.LeakyReLU(0.2),
# 2 -> 1
nn.Conv2d(1024, latent_size, 2, 1),
nn.LeakyReLU(0.2),
nn.Flatten(),
nn.Linear(latent_size, latent_size),
nn.Dropout(0.4)
)
# parameters for variational autoencoder
self.mu = nn.Linear(latent_size, latent_size)
self.sigma = nn.Linear(latent_size, latent_size)
self.N = torch.distributions.Normal(0, 1)
# self.N.loc = self.N.loc.cuda()
# self.N.scale = self.N.scale.cuda()
self.kl = 0
def forward(self, x):
x = self.net(x)
mu = self.mu(x)
sigma = torch.exp(self.sigma(x))
x = mu + sigma * self.N.sample(mu.shape)
self.kl = (sigma**2 + mu**2 - torch.log(sigma) - 1/2).sum()
return x
class ConditionalEncoder(VariationalEncoder):
def __init__(self, latent_size=2048):
super().__init__(input_channels=4, latent_size=latent_size)
self.emb_species = nn.Embedding(len(species), 128**2 // 3 + 128**2 % 3)
self.emb_class = nn.Embedding(len(classes), 128**2 // 3)
self.emb_gender = nn.Embedding(len(genders), 128**2 // 3)
self.emb_reshape = nn.Unflatten(1, (1, 128, 128))
def forward(self, img, species_, class_, gender_):
x = self.emb_species(species_)
y = self.emb_class(class_)
z = self.emb_gender(gender_)
x = torch.concat([x, y, z], dim=1)
x = self.emb_reshape(x)
x = torch.concat([img, x], dim=1)
x = self.net(x)
mu = self.mu(x)
sigma = torch.exp(self.sigma(x))
x = mu + sigma * self.N.sample(mu.shape)
self.kl = (sigma**2 + mu**2 - torch.log(sigma) - 1/2).sum()
return x
class Decoder(nn.Module):
def __init__(self, latent_size=2048):
super().__init__()
self.latent_size = latent_size
self.net = nn.Sequential(
nn.Linear(latent_size, latent_size),
nn.Dropout(0.4),
nn.Unflatten(1, (latent_size, 1, 1)),
# 1 -> 2
nn.ConvTranspose2d(latent_size, 1024, 2, 1),
nn.LeakyReLU(0.2),
# 2 -> 3
nn.ConvTranspose2d(1024, 512, 2, 1),
nn.LeakyReLU(0.2),
# 3 -> 4
nn.ConvTranspose2d(512, 256, 2, 1),
nn.LeakyReLU(0.2),
# 4 -> 5
nn.ConvTranspose2d(256, 128, 2, 1),
nn.LeakyReLU(0.2),
# 5 -> 7
nn.ConvTranspose2d(128, 64, 3, 1),
nn.LeakyReLU(0.2),
# 7 -> 15
nn.ConvTranspose2d(64, 32, 3, 2),
nn.LeakyReLU(0.2),
# 15 -> 31
nn.ConvTranspose2d(32, 16, 3, 2),
nn.LeakyReLU(0.2),
# 31 -> 63
nn.ConvTranspose2d(16, 8, 3, 2),
nn.LeakyReLU(0.2),
# 63 -> 128
nn.ConvTranspose2d(8, 3, 4, 2),
nn.Tanh()
)
def forward(self, x):
return self.net(x)
class ConditionalDecoder(Decoder):
def __init__(self, latent_size=1024):
super().__init__(latent_size)
self.emb_species = nn.Embedding(len(species), latent_size // 3 + latent_size % 3)
self.emb_class = nn.Embedding(len(classes), latent_size // 3)
self.emb_gender = nn.Embedding(len(genders), latent_size // 3)
self.label_net = nn.Linear(2*latent_size, latent_size)
def forward(self, Z, species_, class_, gender_):
x = self.emb_species(species_)
y = self.emb_class(class_)
z = self.emb_gender(gender_)
x = torch.concat([Z, x, y, z], dim=1)
x = self.label_net(x)
x = self.net(x)
return x
class VariationalAutoEncoder(nn.Module):
def __init__(self, latent_size=1024):
super().__init__()
self.latent_size = latent_size
self.enc = VariationalEncoder(latent_size)
self.dec = Decoder(latent_size)
def forward(self, x):
return self.dec(self.enc(x))
class ConditionalVariationalAutoEncoder(nn.Module):
def __init__(self, latent_size=1024):
super().__init__()
self.latent_size = latent_size
self.enc = ConditionalEncoder(latent_size)
self.dec = ConditionalDecoder(latent_size)
def forward(self, img, species_, class_, gender_):
Z = self.enc(img, species_, class_, gender_)
x = self.dec(Z, species_, class_, gender_)
return x
def show_tensor(Z, ax, **kwargs):
if len(Z.shape) > 3:
Z = Z[0]
if Z.min() < 1:
Z = (Z + 1) / 2
Z = np.transpose(Z.detach().cpu().numpy(), (1, 2, 0))
ax.imshow(Z, **kwargs)
return ax |