File size: 20,138 Bytes
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
 
5e9bb10
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
 
 
 
 
5e9bb10
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
9578f22
 
 
548d485
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
2e9a543
 
 
 
5e9bb10
 
 
 
 
 
 
 
 
2e9a543
5e9bb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e9a543
 
 
 
 
 
 
5e9bb10
 
 
 
2e9a543
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# coding=utf-8
# Copyright 2023 Xiaomi Corporation and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CED (Ced) model."""

import collections
import math
from functools import partial
from typing import Any, Callable, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
)
from .configuration_ced import CedConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "CedConfig"
_SEQ_CLASS_EXPECTED_OUTPUT = "'Speech synthesizer'"
_SEQ_CLASS_EXPECTED_LOSS = 0.69

# Audio classification docstring
_SEQ_CLASS_CHECKPOINT = "mispeech/ced-tiny"


CED_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "mispeech/ced-tiny",
    "mispeech/ced-mini",
    "mispeech/ced-small",
    "mispeech/ced-base",
    # See all CED models at https://huggingface.co/models?search=mispeech%2Fced
]


class CedPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CedConfig
    base_model_prefix = "ced"
    main_input_name = "input_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            trunc_normal_(module.weight, std=0.02)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.LayerNorm):
            nn.init.constant_(module.bias, 0)
            nn.init.constant_(module.weight, 1.0)


Conv_Kernel = Union[int, Tuple[int, int]]


def to_2tuple(x: Any) -> Tuple[Any, Any]:
    if isinstance(x, collections.abc.Iterable):
        return x
    return (x, x)


class CedAudioPatchEmbed(nn.Module):
    def __init__(
        self,
        input_size: Conv_Kernel = 224,
        patch_size: Conv_Kernel = 16,
        patch_stride: Conv_Kernel = 16,
        in_chans: int = 1,
        embed_dim: int = 768,
        norm_layer: Optional[Callable] = None,
        flatten: bool = False,
    ):
        super().__init__()
        self.input_size = to_2tuple(input_size)
        self.patch_size = to_2tuple(patch_size)
        self.patch_stride = to_2tuple(patch_stride)
        self.grid_size = (
            self.input_size[0] // self.patch_stride[0],
            self.input_size[1] // self.patch_stride[1],
        )
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        if self.flatten:
            x = torch.permute(torch.flatten(x, 2, 3), (0, 2, 1))
        x = self.norm(x)
        return x


class CedAttention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        attn_drop=0.0,
        proj_drop=0.0,
        causal: bool = False,
    ):
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.causal = causal

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        # if mask is not None:
        # # Mask is a tensor of shape [B, T, T]
        # # Different from self.causal == True, the mask might be something like:
        # # [False, False, True]
        # # [False, False, True]
        # # [True, True, True]
        # # We use -inf to pad here, since if we would pad by any number, the entries at rows only containing
        # # [True, True, True] would lead to weights such as: [0.33,0.33,0.33], which is not correct
        # mask_value = torch.as_tensor(-float('inf'))
        # print(mask.shape, attn.shape)
        # attn = attn.masked_fill(mask, mask_value)
        if self.causal:
            mask_value = -torch.finfo(attn.dtype).max
            i, j = attn.shape[-2:]
            mask = torch.ones(i, j, device=q.device, dtype=torch.bool).triu(j - i + 1)
            attn = attn.masked_fill(mask, mask_value)
        attn = attn.softmax(dim=-1)
        # Only for the case that a mask with all True entries on a row is passed.
        # attn = torch.nan_to_num(attn)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CedMlp(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        act_layer: Callable = nn.GELU,
        drop: float = 0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


# Drop path is taken from Timm
# https://github.com/huggingface/pytorch-image-models/blob/7c67d6aca992f039eece0af5f7c29a43d48c00e4/timm/models/layers/drop.py#L155
class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f"drop_prob={round(self.drop_prob,3):0.3f}"


def drop_path(x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I (https://github.com/rwightman) created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.

    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class CedBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer: Callable = nn.GELU,
        norm_layer: Callable = nn.LayerNorm,
        attention_type: Callable = CedAttention,
        attention_kwargs={},
        **kwargs,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = attention_type(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
            **attention_kwargs,
        )
        self.ls1 = nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = CedMlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=drop,
        )
        self.ls2 = nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x):
        x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


# Taken from timm
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


CED_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`CedConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CED_INPUTS_DOCSTRING = r"""
    Args:
        input_values (`torch.FloatTensor` of shape `(batch_size, n_mels, sequence_length)`):
            The sequence of audio features extracted from the audio signal. Can be obtained from a raw audio waveform
            using `~transformers.CedFeatureExtractor.__call__`.
"""


@add_start_docstrings(
    "The bare Ced Model transformer outputting raw hidden-states without any specific head on top.",
    CED_START_DOCSTRING,
)
class CedModel(CedPreTrainedModel):
    def __init__(self, config: CedConfig) -> None:
        super().__init__(config)
        self.config = config
        self.name = config.name

        # Allowed length in number of frames, otherwise the positional embedding will throw an error
        self.maximal_allowed_length = self.config.target_length

        self.init_bn = torch.nn.BatchNorm2d(config.n_mels, momentum=0.01)

        self.patch_embed = CedAudioPatchEmbed(
            input_size=(config.n_mels, config.target_length),
            embed_dim=config.embed_dim,
            patch_size=config.patch_size,
            flatten=False,
            patch_stride=config.patch_stride,
        )

        self.time_pos_embed = nn.Parameter(torch.randn(1, config.embed_dim, 1, self.patch_embed.grid_size[1]) * 0.02)
        self.freq_pos_embed = nn.Parameter(torch.randn(1, config.embed_dim, self.patch_embed.grid_size[0], 1) * 0.02)
        norm_layer = partial(nn.LayerNorm, eps=1e-6)
        act_layer = nn.GELU
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.depth)]  # stochastic depth decay rule
        self.pos_drop = nn.Dropout(p=config.drop_rate)
        self.blocks = nn.Sequential(
            *[
                CedBlock(
                    dim=config.embed_dim,
                    num_heads=config.num_heads,
                    mlp_ratio=config.mlp_ratio,
                    qkv_bias=config.qkv_bias,
                    drop=config.drop_rate,
                    attn_drop=config.attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    act_layer=act_layer,
                    attention_type=CedAttention,
                )
                for i in range(config.depth)
            ]
        )
        self.norm = norm_layer(config.embed_dim)

        # Initialize weights and apply final processing
        self.post_init()

    def _freeze_parameters(self):
        for param in self.parameters():
            param.requires_grad = False
        self._requires_grad = False

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)
        _, _, _, t = x.shape
        x = x + self.time_pos_embed[:, :, :, :t]
        x = x + self.freq_pos_embed[:, :, :, :]  # Just to support __getitem__ in posembed

        # x = rearrange(x, 'b c f t -> b (f t) c')
        x = torch.permute(torch.flatten(x, 2, 3), (0, 2, 1))

        if self.config.pooling == "token":
            cls_token = self.cls_token.expand(x.shape[0], -1, -1)
            cls_token = cls_token + self.token_pos_embed
            x = torch.cat((cls_token, x), dim=1)
        x = self.pos_drop(x)
        x = self.blocks(x)
        x = self.norm(x)
        return x

    def forward(self, input_values: torch.Tensor):
        r"""
        Runs a forward pass of the CED model as an audio encoder.
        """
        x = torch.unsqueeze(input_values, 1)

        x = torch.permute(x, (0, 2, 1, 3))
        x = self.init_bn(x)
        x = torch.permute(x, (0, 2, 1, 3))

        if x.shape[-1] > self.maximal_allowed_length:
            splits = x.split(self.maximal_allowed_length, -1)

            if splits[-1].shape[-1] < self.maximal_allowed_length:
                if self.config.pad_last:
                    pad = torch.zeros(*x.shape[:-1], self.maximal_allowed_length, device=x.device)
                    pad[..., : splits[-1].shape[-1]] = splits[-1]
                    splits = torch.stack((*splits[:-1], pad), dim=0)
                else:
                    splits = torch.stack(splits[:-1], dim=0)
            else:
                splits = torch.stack(splits[:-1], dim=0)
            n_splits = len(splits)
            x = torch.flatten(splits, 0, 1)  # spl b c f t-> (spl b) c f t
        else:
            n_splits = 1

        x = self.forward_features(x)
        x = torch.reshape(x, (x.shape[0] // n_splits, -1, x.shape[-1]))

        return SequenceClassifierOutput(logits=x)


@add_start_docstrings(
    """
    Ced model with an audio classification head on top (a linear layer on top of the pooled output).
    """,
    CED_START_DOCSTRING,
)
class CedForAudioClassification(CedPreTrainedModel):
    def __init__(self, config: CedConfig) -> None:
        super().__init__(config)
        self.config = config

        self.encoder = CedModel(config)

        # Classifier head
        self.outputlayer = nn.Sequential(
            nn.LayerNorm(config.embed_dim),
            nn.Linear(config.embed_dim, config.outputdim),
        )

        # Initialize weights and apply final processing
        self.post_init()

    def forward_head(self, x: torch.Tensor) -> torch.Tensor:
        if self.config.pooling == "token":
            x = x[:, 0]
            return self.outputlayer(x).sigmoid()
        elif self.config.pooling == "mean":
            x = x.mean(1)
            return self.outputlayer(x).sigmoid()
        elif self.config.pooling == "logit":
            x = x.mean(1)
            return self.outputlayer(x)
        elif self.config.pooling == "dm":
            # Unpack using the frequency dimension, which is constant
            # 'b (f t) d -> b f t d', f=self.patch_embed.grid_size[0])
            x = torch.reshape(x, (x.shape[0], self.patch_embed.grid_size[0], -1, x.shape[3]))

            # First poolin frequency, then sigmoid the (B T D) output
            x = self.outputlayer(x.mean(1)).sigmoid()
            return x.mean(1)
        else:
            return x.mean(1)

    def freeze_encoder(self):
        self.encoder._freeze_parameters()

    @add_start_docstrings_to_model_forward(CED_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_SEQ_CLASS_CHECKPOINT,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        modality="audio",
        model_cls="CedForAudioClassification",
        expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
        expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
    )
    def forward(self, input_values: torch.Tensor, labels: Optional[torch.Tensor] = None):
        """
        Runs a forward pass of the CED model for audio classification task.

        Examples:

        ```python
        >>> from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
        >>> from datasets import load_dataset
        >>> import torch

        >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
        >>> dataset = dataset.sort("id")
        >>> sampling_rate = dataset.features["audio"].sampling_rate

        >>> feature_extractor = AutoFeatureExtractor.from_pretrained("mispeech/ced-tiny")
        >>> model = AutoModelForAudioClassification.from_pretrained("mispeech/ced-tiny")

        >>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")

        >>> with torch.no_grad():
        ...     logits = model(**inputs).logits

        >>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
        >>> predicted_label = model.config.id2label[predicted_class_ids]
        >>> predicted_label
        'Speech synthesizer'
        ```
        """
        last_hidden_states = self.encoder(input_values).logits
        logits = self.forward_head(last_hidden_states)

        if labels is not None:
            if self.config.loss == "CE":
                loss_fct = nn.CrossEntropyLoss()
            elif self.config.loss == "BCE":
                loss_fct = nn.BCEWithLogitsLoss()
            else:
                raise NotImplementedError("Need to set 'CE' or 'BCE' as config.loss.")
            labels = nn.functional.one_hot(labels, num_classes=self.config.outputdim).float()
            loss = loss_fct(logits, labels)
        else:
            loss = None

        return SequenceClassifierOutput(logits=logits, loss=loss, hidden_states=last_hidden_states)