File size: 1,012 Bytes
9ccafee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import requests
# API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli"
# headers = {"Authorization": f"Bearer {hft}"}
API_URL = "https://api-inference.huggingface.co/models/deepset/roberta-base-squad2"
headers = {"Authorization": "Bearer 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"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# output = query({
# "inputs": {
# "question": "What's my name?",
# "context": "My name is Clara and I live in Berkeley.",
# },
# })
def get_ans(question,context):
output = query({
"inputs": {
"question": question,
"context": context,
},
})
return output
def get_label_score_dict(row, threshold):
result_dict = dict()
for _label, _score in zip(row['labels'], row['scores']):
if _score > threshold:
result_dict.update({_label: 1})
else:
result_dict.update({_label: 0})
return result_dict
|