File size: 5,181 Bytes
82fea12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
from pathlib import Path
from typing import Any, Dict, Optional, Union

import torch
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast

from modules import shared
from modules.logging_colors import logger

try:
    from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
except:
    logger.warning('Exllama module failed to load. Will attempt to load from repositories.')
    try:
        from modules.relative_imports import RelativeImport

        with RelativeImport("repositories/exllama"):
            from model import ExLlama, ExLlamaCache, ExLlamaConfig
    except:
        logger.error("Could not find repositories/exllama/. Make sure that exllama is cloned inside repositories/ and is up to date.")
        raise


class ExllamaHF(PreTrainedModel):
    def __init__(self, config: ExLlamaConfig):
        super().__init__(PretrainedConfig())
        self.ex_config = config
        self.ex_model = ExLlama(self.ex_config)
        self.ex_cache = ExLlamaCache(self.ex_model)
        self.generation_config = GenerationConfig()
        self.lora = None

    def _validate_model_class(self):
        pass

    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        pass

    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        return {'input_ids': input_ids, **kwargs}

    @property
    def device(self) -> torch.device:
        return torch.device(0)

    def __call__(self, *args, **kwargs):
        # TODO: Some decoding methods (such as Contrastive Search) may not work at this time
        assert len(args) == 0, 'no *args should be passed to forward'
        use_cache = kwargs.get('use_cache', True)
        labels = kwargs.get('labels', None)
        seq = kwargs['input_ids'][0].tolist()
        cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None

        if labels is None:
            if cache is None:
                self.ex_cache.current_seq_len = 0
                cache = self.ex_cache
                self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True, lora=self.lora)

            logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache, lora=self.lora).to(kwargs['input_ids'].device)
        else:
            if cache is None:
                self.ex_cache.current_seq_len = 0
                cache = self.ex_cache

            logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), cache, last_id_only=False, lora=self.lora)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, logits.shape[-1])
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
        assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
        if isinstance(pretrained_model_name_or_path, str):
            pretrained_model_name_or_path = Path(pretrained_model_name_or_path)

        pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
        config = ExLlamaConfig(pretrained_model_name_or_path / 'config.json')

        # from 'oobabooga/text-generation-webui/modules/exllama.py'
        weight_path = None
        for ext in ['.safetensors', '.pt', '.bin']:
            found = list(pretrained_model_name_or_path.glob(f"*{ext}"))
            if len(found) > 0:
                weight_path = found[-1]
                break
        assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"'

        config.model_path = str(weight_path)
        config.max_seq_len = shared.args.max_seq_len
        config.compress_pos_emb = shared.args.compress_pos_emb
        if shared.args.gpu_split:
            config.set_auto_map(shared.args.gpu_split)
            config.gpu_peer_fix = True

        if shared.args.alpha_value:
            config.alpha_value = shared.args.alpha_value
            config.calculate_rotary_embedding_base()

        if torch.version.hip:
            config.rmsnorm_no_half2 = True
            config.rope_no_half2 = True
            config.matmul_no_half2 = True
            config.silu_no_half2 = True

        # This slowes down a bit but align better with autogptq generation.
        # TODO: Should give user choice to tune the exllama config
        # config.fused_attn = False
        # config.fused_mlp_thd = 0

        return ExllamaHF(config)