Spaces:
Running
Running
File size: 7,962 Bytes
ca5b08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
import json
import argparse
import distance
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
from collections import deque
from tqdm import tqdm
from eval.parallel import parallel_process
class TableTree(Tree):
def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
self.tag = tag
self.colspan = colspan
self.rowspan = rowspan
self.content = content
self.children = list(children)
def bracket(self):
"""Show tree using brackets notation"""
if self.tag == 'td':
result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \
(self.tag, self.colspan, self.rowspan, self.content)
else:
result = '"tag": %s' % self.tag
for child in self.children:
result += child.bracket()
return "{{{}}}".format(result)
class CustomConfig(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
return self.normalized_distance(node1.content, node2.content)
return 0.
class TEDS(object):
''' Tree Edit Distance basead Similarity
'''
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
assert isinstance(n_jobs, int) and (n_jobs >= 1), 'n_jobs must be an integer greather than 1'
self.structure_only = structure_only
self.n_jobs = n_jobs
self.ignore_nodes = ignore_nodes
self.__tokens__ = []
def tokenize(self, node):
''' Tokenizes table cells
'''
self.__tokens__.append('<%s>' % node.tag)
if node.text is not None:
self.__tokens__ += list(node.text)
for n in node.getchildren():
self.tokenize(n)
if node.tag != 'unk':
self.__tokens__.append('</%s>' % node.tag)
if node.tag != 'td' and node.tail is not None:
self.__tokens__ += list(node.tail)
def load_html_tree(self, node, parent=None):
''' Converts HTML tree to the format required by apted
'''
global __tokens__
if node.tag == 'td':
if self.structure_only:
cell = []
else:
self.__tokens__ = []
self.tokenize(node)
cell = self.__tokens__[1:-1].copy()
new_node = TableTree(node.tag,
int(node.attrib.get('colspan', '1')),
int(node.attrib.get('rowspan', '1')),
cell, *deque())
else:
new_node = TableTree(node.tag, None, None, None, *deque())
if parent is not None:
parent.children.append(new_node)
if node.tag != 'td':
for n in node.getchildren():
self.load_html_tree(n, new_node)
if parent is None:
return new_node
def evaluate(self, pred, true):
''' Computes TEDS score between the prediction and the ground truth of a
given sample
'''
if (not pred) or (not true):
return 0.0
pred = "<html>" + pred + "</html>"
true = "<html>" + true + "</html>"
parser = html.HTMLParser(remove_comments=True, encoding='utf-8')
pred = html.fromstring(pred, parser=parser)
true = html.fromstring(true, parser=parser)
if pred.xpath('body/table') and true.xpath('body/table'):
pred = pred.xpath('body/table')[0]
true = true.xpath('body/table')[0]
if self.ignore_nodes:
etree.strip_tags(pred, *self.ignore_nodes)
etree.strip_tags(true, *self.ignore_nodes)
n_nodes_pred = len(pred.xpath(".//*"))
n_nodes_true = len(true.xpath(".//*"))
n_nodes = max(n_nodes_pred, n_nodes_true)
tree_pred = self.load_html_tree(pred)
tree_true = self.load_html_tree(true)
distance = APTED(tree_pred, tree_true, CustomConfig()).compute_edit_distance()
return 1.0 - (float(distance) / n_nodes)
else:
return 0.0
def batch_evaluate(self, pred_json, true_json):
''' Computes TEDS score between the prediction and the ground truth of
a batch of samples
@params pred_json: {'FILENAME': 'HTML CODE', ...}
@params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
@output: {'FILENAME': 'TEDS SCORE', ...}
'''
samples = true_json.keys()
if self.n_jobs == 1:
scores = [self.evaluate(pred_json.get(filename, ''), true_json[filename]['html']) for filename in tqdm(samples)]
else:
inputs = [{'pred': pred_json.get(filename, ''), 'true': true_json[filename]['html']} for filename in samples]
scores = parallel_process(inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
total_score_simple = 0
num_simple = 0
total_score_complex = 0
num_complex = 0
total_score = 0
num_total = 0
for filename,score in zip(samples, scores):
print(filename)
print(score)
print('')
if true_json[filename]['type'] == 'simple':
total_score_simple += score
num_simple += 1
elif true_json[filename]['type'] == 'complex':
total_score_complex += score
num_complex += 1
else:
raise ValueError('Unknown type: %s' % true_json[filename]['type'])
total_score += score
num_total += 1
if num_simple > 0:
avg_score_simple = total_score_simple / num_simple
else:
avg_score_simple = 0
if num_complex > 0:
avg_score_complex = total_score_complex / num_complex
else:
avg_score_complex = 0
avg_score = total_score / num_total
print({'simple': (num_simple,avg_score_simple), 'complex': (num_complex,avg_score_complex), 'total': (num_total,avg_score)})
def main():
parser = argparse.ArgumentParser(description="Evaluate page_to_markdown task")
parser.add_argument(
"workspace",
help="The filesystem path where work will be stored, can be a local folder",
)
parser.add_argument(
"--gt_file",
help="Ground truth file",
)
parser.add_argument("--n_jobs", type=int, default=40, help="Number of jobs to run in parallel")
args = parser.parse_args()
pred_data = {}
root_dir = os.path.join(args.workspace, "results")
for jsonl_file in os.listdir(root_dir):
if jsonl_file.endswith(".jsonl"):
with open(os.path.join(root_dir, jsonl_file), "r") as f:
for line in f:
data = json.loads(line)
key = os.path.basename(data['orig_path']).split('.')[0]
pred_data[key] = data['merged_tables']
gt_data = {}
with open(args.gt_file, "r") as f:
for line in f:
data = json.loads(line)
key = data['image_name'].split('.')[0]
gt_data[key] = {'html':data['gt_table'], 'type':data['type']}
teds = TEDS(n_jobs=args.n_jobs, ignore_nodes=['b', 'thead', 'tbody'])
teds.batch_evaluate(pred_data, gt_data)
if __name__ == "__main__":
main() |