File size: 3,116 Bytes
673d163
 
 
 
 
 
 
 
 
0df3389
 
 
8c9f460
0df3389
673d163
 
 
 
 
 
 
 
 
0df3389
673d163
 
 
 
 
 
0df3389
673d163
0df3389
 
8c9f460
 
0df3389
8c9f460
 
0df3389
8c9f460
 
 
 
0df3389
673d163
3d30833
673d163
 
 
 
 
 
0df3389
 
 
673d163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from langchain import PromptTemplate, LLMChain
from langchain.llms import CTransformers
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceBgeEmbeddings
from io import BytesIO
from langchain.document_loaders import PyPDFLoader
import gradio as gr


local_llm = "zephyr_tuning_small_finish_Q5_K_M.gguf"

config = {
'max_new_tokens': 2048,
'repetition_penalty': 1.1,
'temperature': 0.6,
'top_k': 50,
'top_p': 0.9,
'stream': True,
'threads': int(os.cpu_count() / 2)
}

llm = CTransformers(
    model=local_llm,
    model_type="mistral",
    lib="avx2", #for CPU use
    **config
)

print("LLM Initialized...")


prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
μ œμ‹œλœ μ§ˆλ¬Έμ— λŒ€ν•΄μ„œ context λ‚΄μš©μœΌλ‘œ λ‹΅λ³€ν•΄μ€˜.

### Context :
{context}

### Instruction:
{question}

### Response:
"""

model_name = "jhgan/ko-sroberta-multitask"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)


prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
load_vector_store = Chroma(persist_directory="stores/pet_cosine", embedding_function=embeddings)
retriever = load_vector_store.as_retriever(search_kwargs={"k":1})
# query = "what is the fastest speed for a greyhound dog?"
# semantic_search = retriever.get_relevant_documents(query)
# print(semantic_search)

print("######################################################################")

chain_type_kwargs = {"prompt": prompt}

# qa = RetrievalQA.from_chain_type(
#     llm=llm,
#     chain_type="stuff",
#     retriever=retriever,
#     return_source_documents = True,
#     chain_type_kwargs= chain_type_kwargs,
#     verbose=True
# )

# response = qa(query)

# print(response)

sample_prompts = ["what is the fastest speed for a greyhound dog?", "Why should we not feed chocolates to the dogs?", "Name two factors which might contribute to why some dogs might get scared?"]

def get_response(input):
  query = input
  chain_type_kwargs = {"prompt": prompt}
  qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True)
  response = qa(query)
  return response

input = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

iface = gr.Interface(fn=get_response, 
             inputs=input, 
             outputs="text",
             title="My Dog PetCare Bot",
             description="This is a RAG implementation based on Zephyr 7B Beta LLM.",
             examples=sample_prompts,
             allow_screenshot=False,
             allow_flagging=False
             )

iface.launch()