File size: 6,705 Bytes
3945f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import pandas as pd
import numpy as np
import re
import os
import sys
import random
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from transformers import T5Tokenizer, T5ForConditionalGeneration
import gradio as gr




def greet(co):
    code_text = []
    while True:
        code = co
        if not code:
            break
        code_text.append(code)
    '''
    iter_num = int(
        input('false alarm์„ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ž…๋ ฅํ•  ์ฝ”๋“œ์˜ ๊ฐฏ์ˆ˜๋Š” ๋ช‡๊ฐœ์ธ๊ฐ€์š”? (์ˆซ์ž๋งŒ ์ž…๋ ฅํ•˜์„ธ์š”.) : '))
    code_text = []
    for _ in range(iter_num):
        code = input('์ฝ”๋“œ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š” : ')
        code_text.append(code)
    '''
    code_text = ' '.join(code_text)
    code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
    code_text = re.sub('\/\/.*', '', code_text)
    code_text = re.sub('(\\\\n)+', '\\n', code_text)

    # 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model
    path = os.getcwd() + '/models/CFA-CodeBERTa-small.pt'
    tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1")
    input_ids = tokenizer.encode(
        code_text, max_length=512, truncation=True, padding='max_length')
    input_ids = torch.tensor([input_ids])
    model = RobertaForSequenceClassification.from_pretrained(
        path, num_labels=2)
    model.to('cpu')
    pred_1 = model(input_ids)[0].detach().cpu().numpy()[0]
    # model(input_ids)[0].argmax().detach().cpu().numpy().item()

    # 2. CFA-codebert-c.pt -> codebert-c finetuning model
    path = os.getcwd() + '/models/CFA-codebert-c.pt'
    tokenizer = AutoTokenizer.from_pretrained(path)
    input_ids = tokenizer(code_text, padding=True, max_length=512,
                          truncation=True, return_token_type_ids=True)['input_ids']
    input_ids = torch.tensor([input_ids])
    model = AutoModelForSequenceClassification.from_pretrained(
        path, num_labels=2)
    pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]

    # 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
    path = os.getcwd() + '/models/CFA-codebert-c-v2.pt'
    tokenizer = RobertaTokenizer.from_pretrained(path)
    input_ids = tokenizer(code_text, padding=True, max_length=512,
                          truncation=True, return_token_type_ids=True)['input_ids']
    input_ids = torch.tensor([input_ids])
    model = RobertaForSequenceClassification.from_pretrained(
        path, num_labels=2)
    pred_3 = model(input_ids)[0].detach().cpu().numpy()

    # 4. codeT5 finetuning model
    path = os.getcwd() + '/models/CFA-codeT5'
    model_params = {
        # model_type: t5-base/t5-large
        "MODEL": path,
        "TRAIN_BATCH_SIZE": 8,  # training batch size
        "VALID_BATCH_SIZE": 8,  # validation batch size
        "VAL_EPOCHS": 1,  # number of validation epochs
        "MAX_SOURCE_TEXT_LENGTH": 512,  # max length of source text
        "MAX_TARGET_TEXT_LENGTH": 3,  # max length of target text
        "SEED": 2022,  # set seed for reproducibility
    }
    data = pd.DataFrame({'code': [code_text]})
    pred_4 = T5Trainer(
        dataframe=data,
        source_text="code",
        model_params=model_params
    )
    pred_4 = int(pred_4[0])

    # ensemble
    tot_result = (pred_1 * 0.8 + pred_2 * 0.1 +
                  pred_3 * 0.1 + pred_4 * 0.1).argmax()

    return tot_result


    
# codeT5
class YourDataSetClass(Dataset):

    def __init__(
            self, dataframe, tokenizer, source_len, source_text):

        self.tokenizer = tokenizer
        self.data = dataframe
        self.source_len = source_len
        # self.summ_len = target_len
        # self.target_text = self.data[target_text]
        self.source_text = self.data[source_text]

    def __len__(self):
        return len(self.source_text)

    def __getitem__(self, index):

        source_text = str(self.source_text[index])
        source_text = " ".join(source_text.split())
        source = self.tokenizer.batch_encode_plus(
            [source_text],
            max_length=self.source_len,
            pad_to_max_length=True,
            truncation=True,
            padding="max_length",
            return_tensors="pt",
        )
        source_ids = source["input_ids"].squeeze()
        source_mask = source["attention_mask"].squeeze()
        return {
            "source_ids": source_ids.to(dtype=torch.long),
            "source_mask": source_mask.to(dtype=torch.long),
        }


def validate(epoch, tokenizer, model, device, loader):
    model.eval()
    predictions = []
    with torch.no_grad():
        for _, data in enumerate(loader, 0):
            ids = data['source_ids'].to(device, dtype=torch.long)
            mask = data['source_mask'].to(device, dtype=torch.long)

            generated_ids = model.generate(
                input_ids=ids,
                attention_mask=mask,
                max_length=150,
                num_beams=2,
                repetition_penalty=2.5,
                length_penalty=1.0,
                early_stopping=True
            )

            preds = [tokenizer.decode(
                g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
            if ((preds != '0') | (preds != '1')):
                preds = '0'

            predictions.extend(preds)
    return predictions


def T5Trainer(dataframe, source_text, model_params, step="test",):

    torch.manual_seed(model_params["SEED"])  # pytorch random seed
    np.random.seed(model_params["SEED"])  # numpy random seed
    torch.backends.cudnn.deterministic = True

    tokenizer = T5Tokenizer.from_pretrained(model_params["MODEL"])

    model = T5ForConditionalGeneration.from_pretrained(model_params["MODEL"])
    model = model.to('cpu')

    dataframe = dataframe[[source_text]]

    val_dataset = dataframe
    val_set = YourDataSetClass(
        val_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"],  source_text)

    val_params = {
        'batch_size': model_params["VALID_BATCH_SIZE"],
        'shuffle': False,
        'num_workers': 0
    }

    val_loader = DataLoader(val_set, **val_params)

    for epoch in range(model_params["VAL_EPOCHS"]):
        predictions = validate(epoch, tokenizer, model, 'cpu', val_loader)

    return predictions


#################################################################################

demo = gr.Interface(
    fn = greet,
    inputs = "text",
    outputs= "number")
demo.launch(share=True)