File size: 70,457 Bytes
6f2c7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 |
#!/usr/bin/env python3
"""
MIMO - Complete HuggingFace Spaces Implementation
Controllable Character Video Synthesis with Spatial Decomposed Modeling
Complete features matching README_SETUP.md:
- Character Image Animation (run_animate.py functionality)
- Video Character Editing (run_edit.py functionality)
- Real motion templates from assets/video_template/
- Auto GPU detection (T4/A10G/A100)
- Auto model downloading
- Human segmentation and background processing
- Pose-guided video generation with occlusion handling
"""
# CRITICAL: Import spaces FIRST before any torch/CUDA operations
# This prevents CUDA initialization errors on HuggingFace Spaces ZeroGPU
try:
import spaces
HAS_SPACES = True
print("β
Spaces library loaded - ZeroGPU mode enabled")
except ImportError:
HAS_SPACES = False
print("β οΈ Spaces library not available - running in local mode")
import sys
import os
import json
import time
import traceback
from pathlib import Path
from typing import List, Optional, Dict, Tuple
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
import imageio
from omegaconf import OmegaConf
from huggingface_hub import snapshot_download, hf_hub_download
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
# Add src to path for imports
sys.path.append('./src')
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
# Optional: human segmenter (requires tensorflow)
try:
from tools.human_segmenter import human_segmenter
HAS_SEGMENTER = True
except ImportError:
print("β οΈ TensorFlow not available, human_segmenter disabled (will use fallback)")
human_segmenter = None
HAS_SEGMENTER = False
from tools.util import (
load_mask_list, crop_img, pad_img, crop_human,
crop_human_clip_auto_context, get_mask, load_video_fixed_fps,
recover_bk, all_file
)
# Global variables
# CRITICAL: For HF Spaces ZeroGPU, keep device as "cpu" initially
# Models will be moved to GPU only inside @spaces.GPU() decorated functions
DEVICE = "cpu" # Don't initialize CUDA in main process
MODEL_CACHE = "./models"
ASSETS_CACHE = "./assets"
# CRITICAL: Set memory optimization for PyTorch to avoid fragmentation
# This helps ZeroGPU handle memory more efficiently
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
class CompleteMIMO:
"""Complete MIMO implementation matching README_SETUP.md functionality"""
def __init__(self):
self.pipe = None
self.is_loaded = False
self.segmenter = None
self.mask_list = None
self.weight_dtype = torch.float32
self._model_cache_valid = False # Track if models are loaded
# Create cache directories
os.makedirs(MODEL_CACHE, exist_ok=True)
os.makedirs(ASSETS_CACHE, exist_ok=True)
os.makedirs("./output", exist_ok=True)
print(f"π MIMO initializing on {DEVICE}")
if DEVICE == "cuda":
print(f"π GPU: {torch.cuda.get_device_name()}")
print(f"πΎ VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
# Check if models are already loaded from previous session
self._check_existing_models()
def _check_existing_models(self):
"""Check if models are already downloaded and show status"""
try:
# Use the same path detection logic as load_model
# This accounts for HuggingFace cache structure (models--org--name/snapshots/hash/)
from pathlib import Path
# Check if any model directories exist (either simple or HF cache structure)
model_dirs = [
Path(f"{MODEL_CACHE}/stable-diffusion-v1-5"),
Path(f"{MODEL_CACHE}/sd-vae-ft-mse"),
Path(f"{MODEL_CACHE}/mimo_weights"),
Path(f"{MODEL_CACHE}/image_encoder_full")
]
# Also check for HuggingFace cache structure
cache_patterns = [
"models--runwayml--stable-diffusion-v1-5",
"models--stabilityai--sd-vae-ft-mse",
"models--menyifang--MIMO",
"models--lambdalabs--sd-image-variations-diffusers"
]
models_found = 0
for pattern in cache_patterns:
# Check if any directory contains this pattern
for cache_dir in Path(MODEL_CACHE).rglob(pattern):
if cache_dir.is_dir():
models_found += 1
break
# Also check simple paths
for model_dir in model_dirs:
if model_dir.exists() and model_dir.is_dir():
models_found += 1
if models_found >= 3: # At least 3 major components found
print(f"β
Found {models_found} model components in cache - models persist across restarts!")
self._model_cache_valid = True
if not self.is_loaded:
print("π‘ Models available - click 'Load Model' to activate")
return True
else:
print(f"β οΈ Only found {models_found} model components - click 'Setup Models' to download")
self._model_cache_valid = False
return False
except Exception as e:
print(f"β οΈ Could not check existing models: {e}")
import traceback
traceback.print_exc()
self._model_cache_valid = False
return False
def download_models(self, progress_callback=None):
"""Download all required models matching README_SETUP.md requirements"""
# CRITICAL: Disable hf_transfer to avoid download errors on HF Spaces
# The hf_transfer backend can be problematic in Spaces environment
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '0'
def update_progress(msg):
if progress_callback:
progress_callback(msg)
print(f"π₯ {msg}")
update_progress("π§ Disabled hf_transfer for stable downloads")
downloaded_count = 0
total_steps = 7
try:
# 1. Download MIMO models (main weights) - CRITICAL
try:
update_progress("Downloading MIMO main models...")
snapshot_download(
repo_id="menyifang/MIMO",
cache_dir=f"{MODEL_CACHE}/mimo_weights",
allow_patterns=["*.pth", "*.json", "*.md"],
token=None
)
downloaded_count += 1
update_progress(f"β
MIMO models downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"β οΈ MIMO models download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 2. Download Stable Diffusion v1.5 (base model) - CRITICAL
try:
update_progress("Downloading Stable Diffusion v1.5...")
snapshot_download(
repo_id="runwayml/stable-diffusion-v1-5",
cache_dir=f"{MODEL_CACHE}/stable-diffusion-v1-5",
allow_patterns=["**/*.json", "**/*.bin", "**/*.safetensors", "**/*.txt"],
ignore_patterns=["*.msgpack", "*.h5", "*.ot"],
token=None
)
downloaded_count += 1
update_progress(f"β
SD v1.5 downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"β οΈ SD v1.5 download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 3. Download VAE (improved autoencoder) - CRITICAL
try:
update_progress("Downloading sd-vae-ft-mse...")
snapshot_download(
repo_id="stabilityai/sd-vae-ft-mse",
cache_dir=f"{MODEL_CACHE}/sd-vae-ft-mse",
token=None
)
downloaded_count += 1
update_progress(f"β
VAE downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"β οΈ VAE download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 4. Download image encoder (for reference image processing) - CRITICAL
try:
update_progress("Downloading image encoder...")
snapshot_download(
repo_id="lambdalabs/sd-image-variations-diffusers",
cache_dir=f"{MODEL_CACHE}/image_encoder_full",
allow_patterns=["image_encoder/**"],
token=None
)
downloaded_count += 1
update_progress(f"β
Image encoder downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"β οΈ Image encoder download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 5. Download human segmenter (for background separation) - OPTIONAL
try:
update_progress("Downloading human segmenter...")
os.makedirs(ASSETS_CACHE, exist_ok=True)
if not os.path.exists(f"{ASSETS_CACHE}/matting_human.pb"):
hf_hub_download(
repo_id="menyifang/MIMO",
filename="matting_human.pb",
cache_dir=ASSETS_CACHE,
local_dir=ASSETS_CACHE,
token=None
)
downloaded_count += 1
update_progress(f"β
Human segmenter downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"β οΈ Human segmenter download failed (optional): {str(e)[:100]}")
print(f"Will use fallback segmentation. Error: {e}")
# 6. Setup video templates directory - OPTIONAL
# Note: Templates are not available in the HuggingFace MIMO repo
# Users need to manually upload them or use reference image only
try:
update_progress("Setting up video templates...")
os.makedirs("./assets/video_template", exist_ok=True)
# Check if any templates already exist (manually uploaded)
existing_templates = []
try:
for item in os.listdir("./assets/video_template"):
template_path = os.path.join("./assets/video_template", item)
if os.path.isdir(template_path) and os.path.exists(os.path.join(template_path, "sdc.mp4")):
existing_templates.append(item)
except:
pass
if existing_templates:
update_progress(f"β
Found {len(existing_templates)} existing templates")
downloaded_count += 1
else:
update_progress("βΉοΈ No video templates found (optional - see TEMPLATES_SETUP.md)")
print("π‘ Templates are optional. You can:")
print(" 1. Use reference image only (no template needed)")
print(" 2. Manually upload templates to assets/video_template/")
print(" 3. See TEMPLATES_SETUP.md for instructions")
except Exception as e:
update_progress(f"β οΈ Template setup warning: {str(e)[:100]}")
print("π‘ Templates are optional - app will work without them")
# 7. Create necessary directories
try:
update_progress("Setting up directories...")
os.makedirs("./assets/masks", exist_ok=True)
os.makedirs("./output", exist_ok=True)
downloaded_count += 1
update_progress(f"β
Directories created ({downloaded_count}/{total_steps})")
except Exception as e:
print(f"Directory creation warning: {e}")
# Check if we have minimum requirements
if downloaded_count >= 4: # At least MIMO, SD, VAE, and image encoder
update_progress(f"β
Setup complete! ({downloaded_count}/{total_steps} steps successful)")
# Update cache validity flag after successful download
self._model_cache_valid = True
print("β
Model cache is now valid - 'Load Model' button will work")
return True
else:
update_progress(f"β οΈ Partial download ({downloaded_count}/{total_steps}). Some features may not work.")
# Still set cache valid if we got some models
if downloaded_count > 0:
self._model_cache_valid = True
return downloaded_count > 0 # Return True if at least something downloaded
except Exception as e:
error_msg = f"β Download failed: {str(e)}"
update_progress(error_msg)
print(f"\n{'='*60}")
print("ERROR DETAILS:")
traceback.print_exc()
print(f"{'='*60}\n")
return False
def load_model(self, progress_callback=None):
"""Load MIMO model with complete functionality"""
def update_progress(msg):
if progress_callback:
progress_callback(msg)
print(f"π {msg}")
try:
if self.is_loaded:
update_progress("β
Model already loaded")
return True
# Check if model files exist and find actual paths
update_progress("Checking model files...")
# Helper function to find model in cache
def find_model_path(primary_path, model_name, search_patterns=None):
"""Find model in cache, checking multiple possible locations"""
# Check primary path first
if os.path.exists(primary_path):
# Verify it's a valid model directory (has config.json or model files)
try:
has_config = os.path.exists(os.path.join(primary_path, "config.json"))
has_model_files = any(f.endswith(('.bin', '.safetensors', '.pth')) for f in os.listdir(primary_path) if os.path.isfile(os.path.join(primary_path, f)))
if has_config or has_model_files:
update_progress(f"β
Found {model_name} at primary path")
return primary_path
else:
# Primary path exists but might be a cache directory - check inside
update_progress(f"β οΈ Primary path exists but appears to be a cache directory, searching inside...")
# Check if it contains a models--org--name subdirectory
if search_patterns:
for pattern in search_patterns:
# Extract just the directory name from pattern
cache_dir_name = pattern.split('/')[-1] if '/' in pattern else pattern
cache_subdir = os.path.join(primary_path, cache_dir_name)
if os.path.exists(cache_subdir):
update_progress(f" Found cache subdir: {cache_dir_name}")
# Check in snapshots
snap_path = os.path.join(cache_subdir, "snapshots")
if os.path.exists(snap_path):
try:
snapshot_dirs = [d for d in os.listdir(snap_path) if os.path.isdir(os.path.join(snap_path, d))]
if snapshot_dirs:
full_path = os.path.join(snap_path, snapshot_dirs[0])
update_progress(f" Checking snapshot: {snapshot_dirs[0]}")
# Check if this is a valid model directory
# For SD models, may have subdirectories (unet, vae, etc.)
has_config = os.path.exists(os.path.join(full_path, "config.json"))
has_model_index = os.path.exists(os.path.join(full_path, "model_index.json"))
has_subdirs = any(os.path.isdir(os.path.join(full_path, d)) for d in os.listdir(full_path))
has_model_files = any(f.endswith(('.bin', '.safetensors', '.pth')) for f in os.listdir(full_path) if os.path.isfile(os.path.join(full_path, f)))
if has_config or has_model_index or has_model_files or has_subdirs:
update_progress(f"β
Found {model_name} in snapshot: {full_path}")
return full_path
else:
update_progress(f" β οΈ Snapshot exists but appears empty or invalid")
except Exception as e:
update_progress(f"β οΈ Error in snapshot: {e}")
except Exception as e:
update_progress(f"β οΈ Error checking primary path: {e}")
# Check HF cache structure in MODEL_CACHE root
if search_patterns:
for pattern in search_patterns:
alt_path = os.path.join(MODEL_CACHE, pattern)
if os.path.exists(alt_path):
update_progress(f" Checking cache: {pattern}")
# Check in snapshots subdirectory
snap_path = os.path.join(alt_path, "snapshots")
if os.path.exists(snap_path):
try:
snapshot_dirs = [d for d in os.listdir(snap_path) if os.path.isdir(os.path.join(snap_path, d))]
if snapshot_dirs:
full_path = os.path.join(snap_path, snapshot_dirs[0])
# Check for various indicators of valid model
has_config = os.path.exists(os.path.join(full_path, "config.json"))
has_model_index = os.path.exists(os.path.join(full_path, "model_index.json"))
has_subdirs = any(os.path.isdir(os.path.join(full_path, d)) for d in os.listdir(full_path))
has_model_files = any(f.endswith(('.bin', '.safetensors', '.pth')) for f in os.listdir(full_path) if os.path.isfile(os.path.join(full_path, f)))
if has_config or has_model_index or has_model_files or has_subdirs:
update_progress(f"β
Found {model_name} in snapshot: {full_path}")
return full_path
except Exception as e:
update_progress(f"β οΈ Error searching snapshots: {e}")
update_progress(f"β οΈ Could not find {model_name} in any location")
return None # Find actual model paths
vae_path = find_model_path(
f"{MODEL_CACHE}/sd-vae-ft-mse",
"VAE",
["models--stabilityai--sd-vae-ft-mse"]
)
sd_path = find_model_path(
f"{MODEL_CACHE}/stable-diffusion-v1-5",
"SD v1.5",
["models--runwayml--stable-diffusion-v1-5"]
)
# Find Image Encoder - handle HF cache structure
encoder_path = None
update_progress(f"π Searching for Image Encoder...")
# Primary search: Check if image_encoder_full contains HF cache structure
image_encoder_base = f"{MODEL_CACHE}/image_encoder_full"
if os.path.exists(image_encoder_base):
try:
contents = os.listdir(image_encoder_base)
update_progress(f" π image_encoder_full contains: {contents}")
# Look for models--lambdalabs--sd-image-variations-diffusers
hf_cache_dir = os.path.join(image_encoder_base, "models--lambdalabs--sd-image-variations-diffusers")
if os.path.exists(hf_cache_dir):
update_progress(f" β Found HF cache directory")
# Navigate into snapshots
snapshots_dir = os.path.join(hf_cache_dir, "snapshots")
if os.path.exists(snapshots_dir):
snapshot_dirs = [d for d in os.listdir(snapshots_dir) if os.path.isdir(os.path.join(snapshots_dir, d))]
if snapshot_dirs:
snapshot_path = os.path.join(snapshots_dir, snapshot_dirs[0])
update_progress(f" β Found snapshot: {snapshot_dirs[0]}")
# Check for image_encoder subfolder
img_enc_path = os.path.join(snapshot_path, "image_encoder")
if os.path.exists(img_enc_path) and os.path.exists(os.path.join(img_enc_path, "config.json")):
encoder_path = img_enc_path
update_progress(f"β
Found Image Encoder at: {img_enc_path}")
elif os.path.exists(os.path.join(snapshot_path, "config.json")):
encoder_path = snapshot_path
update_progress(f"β
Found Image Encoder at: {snapshot_path}")
except Exception as e:
update_progress(f" β οΈ Error navigating cache: {e}")
# Fallback: Try direct paths
if not encoder_path:
fallback_paths = [
f"{MODEL_CACHE}/image_encoder_full/image_encoder",
f"{MODEL_CACHE}/models--lambdalabs--sd-image-variations-diffusers/snapshots/*/image_encoder",
]
for path_pattern in fallback_paths:
if '*' in path_pattern:
import glob
matches = glob.glob(path_pattern)
if matches and os.path.exists(os.path.join(matches[0], "config.json")):
encoder_path = matches[0]
update_progress(f"β
Found Image Encoder via glob: {encoder_path}")
break
elif os.path.exists(path_pattern) and os.path.exists(os.path.join(path_pattern, "config.json")):
encoder_path = path_pattern
update_progress(f"β
Found Image Encoder at: {path_pattern}")
break
mimo_weights_path = find_model_path(
f"{MODEL_CACHE}/mimo_weights",
"MIMO Weights",
["models--menyifang--MIMO"]
)
# Validate required paths
missing = []
if not vae_path:
missing.append("VAE")
update_progress(f"β VAE path not found")
if not sd_path:
missing.append("SD v1.5")
update_progress(f"β SD v1.5 path not found")
if not encoder_path:
missing.append("Image Encoder")
update_progress(f"β Image Encoder path not found")
if not mimo_weights_path:
missing.append("MIMO Weights")
update_progress(f"β MIMO Weights path not found")
if missing:
error_msg = f"Missing required models: {', '.join(missing)}. Please run 'Setup Models' first."
update_progress(f"β {error_msg}")
# List what's actually in MODEL_CACHE to debug
try:
cache_contents = os.listdir(MODEL_CACHE) if os.path.exists(MODEL_CACHE) else []
update_progress(f"π MODEL_CACHE contents: {cache_contents[:15]}")
except:
pass
return False
update_progress("β
All required models found")
# Determine optimal settings
if DEVICE == "cuda":
try:
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
self.weight_dtype = torch.float16 if gpu_memory > 10 else torch.float32
update_progress(f"Using {'FP16' if self.weight_dtype == torch.float16 else 'FP32'} on GPU ({gpu_memory:.1f}GB)")
except Exception as e:
update_progress(f"β οΈ GPU detection failed: {e}, using FP32")
self.weight_dtype = torch.float32
else:
self.weight_dtype = torch.float32
update_progress("Using FP32 on CPU")
# Load VAE (keep on CPU for ZeroGPU)
try:
update_progress("Loading VAE...")
vae = AutoencoderKL.from_pretrained(
vae_path,
torch_dtype=self.weight_dtype
) # Don't move to GPU yet
update_progress("β
VAE loaded (on CPU)")
except Exception as e:
update_progress(f"β VAE loading failed: {str(e)[:100]}")
raise
# Load 2D UNet (reference) - keep on CPU for ZeroGPU
try:
update_progress("Loading Reference UNet...")
reference_unet = UNet2DConditionModel.from_pretrained(
sd_path,
subfolder="unet",
torch_dtype=self.weight_dtype
) # Don't move to GPU yet
update_progress("β
Reference UNet loaded (on CPU)")
except Exception as e:
update_progress(f"β Reference UNet loading failed: {str(e)[:100]}")
raise
# Load inference config
config_path = "./configs/inference/inference_v2.yaml"
if os.path.exists(config_path):
infer_config = OmegaConf.load(config_path)
update_progress("β
Loaded inference config")
else:
# Create complete fallback config matching original implementation
update_progress("Creating fallback inference config...")
infer_config = OmegaConf.create({
"unet_additional_kwargs": {
"use_inflated_groupnorm": True,
"unet_use_cross_frame_attention": False,
"unet_use_temporal_attention": False,
"use_motion_module": True,
"motion_module_resolutions": [1, 2, 4, 8],
"motion_module_mid_block": True,
"motion_module_decoder_only": False,
"motion_module_type": "Vanilla",
"motion_module_kwargs": {
"num_attention_heads": 8,
"num_transformer_block": 1,
"attention_block_types": ["Temporal_Self", "Temporal_Self"],
"temporal_position_encoding": True,
"temporal_position_encoding_max_len": 32,
"temporal_attention_dim_div": 1
}
},
"noise_scheduler_kwargs": {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"clip_sample": False,
"steps_offset": 1,
"prediction_type": "v_prediction",
"rescale_betas_zero_snr": True,
"timestep_spacing": "trailing"
}
})
# Load 3D UNet (denoising) - keep on CPU for ZeroGPU
# NOTE: from_pretrained_2d is a custom MIMO method that doesn't accept torch_dtype
try:
update_progress("Loading Denoising UNet (3D)...")
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
sd_path,
"", # motion_module_path loaded separately
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs
)
# Convert dtype after loading since from_pretrained_2d doesn't accept torch_dtype
denoising_unet = denoising_unet.to(dtype=self.weight_dtype)
update_progress("β
Denoising UNet loaded (on CPU)")
except Exception as e:
update_progress(f"β Denoising UNet loading failed: {str(e)[:100]}")
raise
# Load pose guider - keep on CPU for ZeroGPU
try:
update_progress("Loading Pose Guider...")
pose_guider = PoseGuider(
320,
conditioning_channels=3,
block_out_channels=(16, 32, 96, 256)
).to(dtype=self.weight_dtype) # Don't move to GPU yet
update_progress("β
Pose Guider initialized (on CPU)")
except Exception as e:
update_progress(f"β Pose Guider loading failed: {str(e)[:100]}")
raise
# Load image encoder - keep on CPU for ZeroGPU
try:
update_progress("Loading CLIP Image Encoder...")
image_enc = CLIPVisionModelWithProjection.from_pretrained(
encoder_path,
torch_dtype=self.weight_dtype
) # Don't move to GPU yet
update_progress("β
Image Encoder loaded (on CPU)")
except Exception as e:
update_progress(f"β Image Encoder loading failed: {str(e)[:100]}")
raise
# Load scheduler
update_progress("Loading Scheduler...")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# Load pretrained MIMO weights
update_progress("Loading MIMO pretrained weights...")
weight_files = list(Path(mimo_weights_path).rglob("*.pth"))
if not weight_files:
error_msg = f"No MIMO weight files (.pth) found at {mimo_weights_path}. Please run 'Setup Models' to download them."
update_progress(f"β {error_msg}")
return False
update_progress(f"Found {len(weight_files)} weight files")
weights_loaded = 0
for weight_file in weight_files:
try:
weight_name = weight_file.name
if "denoising_unet" in weight_name:
state_dict = torch.load(weight_file, map_location="cpu")
denoising_unet.load_state_dict(state_dict, strict=False)
update_progress(f"β
Loaded {weight_name}")
weights_loaded += 1
elif "reference_unet" in weight_name:
state_dict = torch.load(weight_file, map_location="cpu")
reference_unet.load_state_dict(state_dict)
update_progress(f"β
Loaded {weight_name}")
weights_loaded += 1
elif "pose_guider" in weight_name:
state_dict = torch.load(weight_file, map_location="cpu")
pose_guider.load_state_dict(state_dict)
update_progress(f"β
Loaded {weight_name}")
weights_loaded += 1
elif "motion_module" in weight_name:
# Load motion module into denoising_unet
state_dict = torch.load(weight_file, map_location="cpu")
denoising_unet.load_state_dict(state_dict, strict=False)
update_progress(f"β
Loaded {weight_name}")
weights_loaded += 1
except Exception as e:
update_progress(f"β οΈ Failed to load {weight_file.name}: {str(e)[:100]}")
print(f"Full error for {weight_file.name}: {e}")
if weights_loaded == 0:
error_msg = "No MIMO weights were successfully loaded"
update_progress(f"β {error_msg}")
return False
update_progress(f"β
Loaded {weights_loaded}/{len(weight_files)} weight files")
# Create pipeline - keep on CPU for ZeroGPU
try:
update_progress("Creating MIMO pipeline...")
self.pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
).to(dtype=self.weight_dtype) # Keep on CPU, will move to GPU during inference
# Enable memory-efficient attention for ZeroGPU
if HAS_SPACES:
try:
# Enable gradient checkpointing to save memory
if hasattr(denoising_unet, 'enable_gradient_checkpointing'):
denoising_unet.enable_gradient_checkpointing()
if hasattr(reference_unet, 'enable_gradient_checkpointing'):
reference_unet.enable_gradient_checkpointing()
# Try to enable xformers for memory efficiency
try:
self.pipe.enable_xformers_memory_efficient_attention()
update_progress("β
Memory-efficient attention enabled")
except:
update_progress("β οΈ xformers not available, using standard attention")
except Exception as e:
update_progress(f"β οΈ Could not enable memory optimizations: {str(e)[:50]}")
update_progress("β
Pipeline created (on CPU - will use GPU during generation)")
except Exception as e:
update_progress(f"β Pipeline creation failed: {str(e)[:100]}")
raise
# Load human segmenter
update_progress("Loading human segmenter...")
if HAS_SEGMENTER:
seg_path = f"{ASSETS_CACHE}/matting_human.pb"
if os.path.exists(seg_path):
try:
self.segmenter = human_segmenter(model_path=seg_path)
update_progress("β
Human segmenter loaded")
except Exception as e:
update_progress(f"β οΈ Segmenter load failed: {e}, using fallback")
self.segmenter = None
else:
update_progress("β οΈ Segmenter model not found, using fallback")
self.segmenter = None
else:
update_progress("β οΈ TensorFlow not available, using fallback segmentation")
self.segmenter = None
# Load mask templates
update_progress("Loading mask templates...")
mask_path = f"{ASSETS_CACHE}/masks/alpha2.png"
if os.path.exists(mask_path):
self.mask_list = load_mask_list(mask_path)
update_progress("β
Mask templates loaded")
else:
# Create fallback masks
update_progress("Creating fallback masks...")
os.makedirs(f"{ASSETS_CACHE}/masks", exist_ok=True)
fallback_mask = np.ones((512, 512), dtype=np.uint8) * 255
self.mask_list = [fallback_mask]
self.is_loaded = True
update_progress("π MIMO model loaded successfully!")
return True
except Exception as e:
update_progress(f"β Model loading failed: {e}")
traceback.print_exc()
return False
def process_image(self, image):
"""Process input image with human segmentation (matching run_edit.py/run_animate.py)"""
if self.segmenter is None:
# Fallback: just resize and center
image = np.array(image)
image = cv2.resize(image, (512, 512))
return Image.fromarray(image), None
try:
img_array = np.array(image)
# Use BGR for segmenter (as in original code)
rgba = self.segmenter.run(img_array[..., ::-1])
mask = rgba[:, :, 3]
color = rgba[:, :, :3]
alpha = mask / 255
bk = np.ones_like(color) * 255
color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
color = color.astype(np.uint8)
# Convert back to RGB
color = color[..., ::-1]
# Crop and pad like original code
color = crop_img(color, mask)
color, _ = pad_img(color, [255, 255, 255])
return Image.fromarray(color), mask
except Exception as e:
print(f"β οΈ Segmentation failed, using original image: {e}")
return image, None
def get_available_templates(self):
"""Get list of available video templates"""
template_dir = "./assets/video_template"
# Create directory if it doesn't exist
if not os.path.exists(template_dir):
os.makedirs(template_dir, exist_ok=True)
print(f"β οΈ Video template directory created: {template_dir}")
print("π‘ Tip: Download templates from HuggingFace repo or use 'Setup Models' button")
return []
templates = []
try:
for item in os.listdir(template_dir):
template_path = os.path.join(template_dir, item)
if os.path.isdir(template_path):
# Check if it has required files
sdc_file = os.path.join(template_path, "sdc.mp4")
if os.path.exists(sdc_file): # At minimum need pose video
templates.append(item)
except Exception as e:
print(f"β οΈ Error scanning templates: {e}")
return []
if not templates:
print("β οΈ No video templates found. Click 'Setup Models' to download.")
return sorted(templates)
def load_template(self, template_path: str) -> Dict:
"""Load template metadata (matching run_edit.py logic)"""
try:
video_path = os.path.join(template_path, 'vid.mp4')
pose_video_path = os.path.join(template_path, 'sdc.mp4')
bk_video_path = os.path.join(template_path, 'bk.mp4')
occ_video_path = os.path.join(template_path, 'occ.mp4')
# Check occlusion masks
if not os.path.exists(occ_video_path):
occ_video_path = None
# Load config if available
config_file = os.path.join(template_path, 'config.json')
if os.path.exists(config_file):
with open(config_file) as f:
template_data = json.load(f)
return {
'video_path': video_path,
'pose_video_path': pose_video_path,
'bk_video_path': bk_video_path if os.path.exists(bk_video_path) else None,
'occ_video_path': occ_video_path,
'target_fps': template_data.get('fps', 30),
'time_crop': template_data.get('time_crop', {'start_idx': 0, 'end_idx': -1}),
'frame_crop': template_data.get('frame_crop', {}),
'layer_recover': template_data.get('layer_recover', True)
}
else:
# Fallback for templates without config
return {
'video_path': video_path if os.path.exists(video_path) else None,
'pose_video_path': pose_video_path,
'bk_video_path': bk_video_path if os.path.exists(bk_video_path) else None,
'occ_video_path': occ_video_path,
'target_fps': 30,
'time_crop': {'start_idx': 0, 'end_idx': -1},
'frame_crop': {},
'layer_recover': True
}
except Exception as e:
print(f"β οΈ Failed to load template config: {e}")
return None
def generate_animation(self, input_image, template_name, mode="edit", progress_callback=None):
"""Generate video animation (implementing both run_edit.py and run_animate.py logic)"""
def update_progress(msg):
if progress_callback:
progress_callback(msg)
print(f"π¬ {msg}")
try:
if not self.is_loaded:
update_progress("Loading model first...")
if not self.load_model(progress_callback):
return None, "β Model loading failed"
# Move pipeline to GPU if using ZeroGPU (only during inference)
if HAS_SPACES and torch.cuda.is_available():
update_progress("Moving models to GPU...")
self.pipe = self.pipe.to("cuda")
update_progress("β
Models on GPU")
# Process input image
update_progress("Processing input image...")
processed_image, mask = self.process_image(input_image)
# Load template
template_path = f"./assets/video_template/{template_name}"
if not os.path.exists(template_path):
return None, f"β Template '{template_name}' not found"
template_info = self.load_template(template_path)
if template_info is None:
return None, f"β Failed to load template '{template_name}'"
update_progress(f"Loaded template: {template_name}")
# Load video components
target_fps = template_info['target_fps']
pose_video_path = template_info['pose_video_path']
if not os.path.exists(pose_video_path):
return None, f"β Pose video not found: {pose_video_path}"
# Load pose sequence
update_progress("Loading motion sequence...")
pose_images = load_video_fixed_fps(pose_video_path, target_fps=target_fps)
# Load background if available
bk_video_path = template_info['bk_video_path']
if bk_video_path and os.path.exists(bk_video_path):
bk_images = load_video_fixed_fps(bk_video_path, target_fps=target_fps)
update_progress("β
Loaded background video")
else:
# Create white background
n_frame = len(pose_images)
tw, th = pose_images[0].size
bk_images = []
for _ in range(n_frame):
bk_img = Image.new('RGB', (tw, th), (255, 255, 255))
bk_images.append(bk_img)
update_progress("β
Created white background")
# Load occlusion masks if available (for advanced editing)
occ_video_path = template_info['occ_video_path']
if occ_video_path and os.path.exists(occ_video_path) and mode == "edit":
occ_mask_images = load_video_fixed_fps(occ_video_path, target_fps=target_fps)
update_progress("β
Loaded occlusion masks")
else:
occ_mask_images = None
# Apply time cropping
time_crop = template_info['time_crop']
start_idx = max(0, int(target_fps * time_crop['start_idx'] / 30)) if time_crop['start_idx'] >= 0 else 0
end_idx = min(len(pose_images), int(target_fps * time_crop['end_idx'] / 30)) if time_crop['end_idx'] >= 0 else len(pose_images)
pose_images = pose_images[start_idx:end_idx]
bk_images = bk_images[start_idx:end_idx]
if occ_mask_images:
occ_mask_images = occ_mask_images[start_idx:end_idx]
# Limit max frames for memory - REDUCED for ZeroGPU (22GB limit)
# ZeroGPU has limited memory, so we reduce from 150 to 100 frames
MAX_FRAMES = 100 if HAS_SPACES else 150
if len(pose_images) > MAX_FRAMES:
update_progress(f"β οΈ Limiting to {MAX_FRAMES} frames to fit in GPU memory")
pose_images = pose_images[:MAX_FRAMES]
bk_images = bk_images[:MAX_FRAMES]
if occ_mask_images:
occ_mask_images = occ_mask_images[:MAX_FRAMES]
num_frames = len(pose_images)
update_progress(f"Processing {num_frames} frames...")
if mode == "animate":
# Simple animation mode (run_animate.py logic)
pose_list = []
vid_bk_list = []
# Crop pose with human-center
pose_images, _, bk_images = crop_human(pose_images, pose_images.copy(), bk_images)
for frame_idx in range(len(pose_images)):
pose_image = np.array(pose_images[frame_idx])
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_list.append(Image.fromarray(pose_image))
vid_bk = np.array(bk_images[frame_idx])
vid_bk, _ = pad_img(vid_bk, color=[255, 255, 255])
vid_bk_list.append(Image.fromarray(vid_bk))
# Generate video
update_progress("Generating animation...")
width, height = 512, 512 # Optimized for HF
steps = 20 # Balanced quality/speed
cfg = 3.5
generator = torch.Generator(device=DEVICE).manual_seed(42)
video = self.pipe(
processed_image,
pose_list,
vid_bk_list,
width,
height,
num_frames,
steps,
cfg,
generator=generator,
).videos[0]
# Convert to output format
update_progress("Post-processing video...")
res_images = []
for video_idx in range(num_frames):
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_images.append(res_image_pil)
else:
# Advanced editing mode (run_edit.py logic)
update_progress("Advanced video editing mode...")
# Load original video for blending
video_path = template_info['video_path']
if video_path and os.path.exists(video_path):
vid_images = load_video_fixed_fps(video_path, target_fps=target_fps)
vid_images = vid_images[start_idx:end_idx][:MAX_FRAMES]
else:
vid_images = pose_images.copy()
# Advanced crop with context for seamless blending
overlay = 4
pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
pose_images, vid_images, bk_images, overlay)
# Process each frame
clip_pad_list_context = []
clip_padv_list_context = []
pose_list_context = []
vid_bk_list_context = []
for frame_idx in range(len(pose_images)):
pose_image = np.array(pose_images[frame_idx])
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_list_context.append(Image.fromarray(pose_image))
vid_bk = np.array(bk_images[frame_idx])
vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
pad_h, pad_w, _ = vid_bk.shape
clip_pad_list_context.append([pad_h, pad_w])
clip_padv_list_context.append(padding_v)
vid_bk_list_context.append(Image.fromarray(vid_bk))
# Generate video with advanced settings
width, height = 784, 784 # Higher resolution for editing
steps = 25 # Higher quality
cfg = 3.5
generator = torch.Generator(device=DEVICE).manual_seed(42)
video = self.pipe(
processed_image,
pose_list_context,
vid_bk_list_context,
width,
height,
len(pose_list_context),
steps,
cfg,
generator=generator,
).videos[0]
# Advanced post-processing with blending and occlusion
update_progress("Advanced post-processing...")
vid_images_ori = vid_images.copy()
bk_images_ori = bk_images.copy()
video_idx = 0
res_images = [None for _ in range(len(pose_images))]
for k, context in enumerate(context_list):
start_i = context[0]
bbox = bbox_clip_list[k]
for i in context:
bk_image_pil_ori = bk_images_ori[i]
vid_image_pil_ori = vid_images_ori[i]
occ_mask = occ_mask_images[i] if occ_mask_images else None
canvas = Image.new("RGB", bk_image_pil_ori.size, "white")
pad_h, pad_w = clip_pad_list_context[video_idx]
padding_v = clip_padv_list_context[video_idx]
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_image_pil = res_image_pil.resize((pad_w, pad_h))
top, bottom, left, right = padding_v
res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))
w_min, w_max, h_min, h_max = bbox
canvas.paste(res_image_pil, (w_min, h_min))
# Apply mask blending
mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask
res_image = np.array(canvas)
bk_image = np.array(bk_image_pil_ori)
res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])
# Apply occlusion masks if available
if occ_mask is not None:
vid_image = np.array(vid_image_pil_ori)
occ_mask_array = np.array(occ_mask)[:, :, 0].astype(np.uint8)
occ_mask_array = occ_mask_array / 255.0
res_image = res_image * (1 - occ_mask_array[:, :, np.newaxis]) + vid_image * occ_mask_array[:, :, np.newaxis]
# Blend overlapping regions
if res_images[i] is None:
res_images[i] = res_image
else:
factor = (i - start_i + 1) / (overlay + 1)
res_images[i] = res_images[i] * (1 - factor) + res_image * factor
res_images[i] = res_images[i].astype(np.uint8)
video_idx += 1
# Save output video
output_path = f"./output/mimo_output_{int(time.time())}.mp4"
imageio.mimsave(output_path, res_images, fps=target_fps, quality=8, macro_block_size=1)
# CRITICAL: Move pipeline back to CPU and clear GPU cache for ZeroGPU
if HAS_SPACES and torch.cuda.is_available():
update_progress("Cleaning up GPU memory...")
self.pipe = self.pipe.to("cpu")
torch.cuda.empty_cache()
torch.cuda.synchronize()
update_progress("β
GPU memory released")
update_progress("β
Video generated successfully!")
return output_path, f"π Generated {len(res_images)} frames at {target_fps}fps using {mode} mode!"
except Exception as e:
# CRITICAL: Always clean up GPU memory on error
if HAS_SPACES and torch.cuda.is_available():
try:
self.pipe = self.pipe.to("cpu")
torch.cuda.empty_cache()
torch.cuda.synchronize()
print("β
GPU memory cleaned up after error")
except:
pass
error_msg = f"β Generation failed: {e}"
update_progress(error_msg)
traceback.print_exc()
return None, error_msg
# Initialize global model
mimo_model = CompleteMIMO()
def gradio_interface():
"""Create complete Gradio interface matching README_SETUP.md functionality"""
def setup_models(progress=gr.Progress()):
"""Setup models with progress tracking"""
try:
# Download models
progress(0.1, desc="Starting download...")
download_success = mimo_model.download_models(lambda msg: progress(0.3, desc=msg))
if not download_success:
return "β οΈ Some downloads failed. Check logs for details. You may still be able to use the app with partial functionality."
# Load models immediately after download
progress(0.6, desc="Loading models...")
load_success = mimo_model.load_model(lambda msg: progress(0.8, desc=msg))
if not load_success:
return "β Model loading failed. Please check the logs and try again."
progress(1.0, desc="β
Ready!")
return "π MIMO is ready! Models loaded successfully. Upload an image and select a template to start."
except Exception as e:
error_details = str(e)
print(f"Setup error: {error_details}")
traceback.print_exc()
return f"β Setup failed: {error_details[:200]}"
# Decorate with @spaces.GPU for ZeroGPU support
if HAS_SPACES:
@spaces.GPU(duration=120) # Allow 120 seconds on GPU
def generate_video_gradio(input_image, template_name, mode, progress=gr.Progress()):
"""Gradio wrapper for video generation"""
if input_image is None:
return None, "Please upload an image first"
if not template_name:
return None, "Please select a motion template"
try:
progress(0.1, desc="Starting generation...")
def progress_callback(msg):
progress(0.5, desc=msg)
output_path, message = mimo_model.generate_animation(
input_image,
template_name,
mode,
progress_callback
)
progress(1.0, desc="Complete!")
return output_path, message
except Exception as e:
return None, f"β Generation failed: {e}"
else:
# Local mode without GPU decorator
def generate_video_gradio(input_image, template_name, mode, progress=gr.Progress()):
"""Gradio wrapper for video generation"""
if input_image is None:
return None, "Please upload an image first"
if not template_name:
return None, "Please select a motion template"
try:
progress(0.1, desc="Starting generation...")
def progress_callback(msg):
progress(0.5, desc=msg)
output_path, message = mimo_model.generate_animation(
input_image,
template_name,
mode,
progress_callback
)
progress(1.0, desc="Complete!")
return output_path, message
except Exception as e:
return None, f"β Generation failed: {e}"
def refresh_templates():
"""Refresh available templates"""
templates = mimo_model.get_available_templates()
return gr.Dropdown(choices=templates, value=templates[0] if templates else None)
# Create Gradio blocks
with gr.Blocks(
title="MIMO - Complete Character Video Synthesis",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px;
margin: auto;
}
.header {
text-align: center;
margin-bottom: 2rem;
color: #1a1a1a !important;
}
.header h1 {
color: #2c3e50 !important;
margin-bottom: 0.5rem;
font-weight: 700;
}
.header p {
color: #34495e !important;
margin: 0.5rem 0;
font-weight: 500;
}
.header a {
color: #3498db !important;
text-decoration: none;
margin: 0 0.5rem;
font-weight: 600;
}
.header a:hover {
text-decoration: underline;
color: #2980b9 !important;
}
.mode-info {
padding: 1rem;
margin: 1rem 0;
border-radius: 8px;
color: #2c3e50 !important;
}
.mode-info h4 {
margin-top: 0;
color: #2c3e50 !important;
font-weight: 700;
}
.mode-info p {
margin: 0.5rem 0;
color: #34495e !important;
font-weight: 500;
}
.mode-info strong {
color: #1a1a1a !important;
font-weight: 700;
}
.mode-animate {
background: #e8f5e8;
border-left: 4px solid #4caf50;
}
.mode-edit {
background: #e3f2fd;
border-left: 4px solid #2196f3;
}
.warning-box {
padding: 1rem;
background: #fff3cd;
border-left: 4px solid #ffc107;
margin: 1rem 0;
border-radius: 4px;
}
.warning-box b {
color: #856404 !important;
font-weight: 700;
}
.warning-box br + text, .warning-box {
color: #856404 !important;
}
.warning-box, .warning-box * {
color: #856404 !important;
}
.instructions-box {
margin-top: 2rem;
padding: 1.5rem;
background: #f8f9fa;
border-radius: 8px;
border: 1px solid #dee2e6;
}
.instructions-box h4 {
color: #2c3e50 !important;
margin-top: 1rem;
margin-bottom: 0.5rem;
font-weight: 700;
}
.instructions-box h4:first-child {
margin-top: 0;
}
.instructions-box ol {
color: #495057 !important;
line-height: 1.8;
}
.instructions-box ol li {
margin: 0.5rem 0;
color: #495057 !important;
}
.instructions-box ol li strong {
color: #1a1a1a !important;
font-weight: 700;
}
.instructions-box p {
color: #495057 !important;
margin: 0.3rem 0;
line-height: 1.6;
}
.instructions-box p strong {
color: #1a1a1a !important;
font-weight: 700;
}
"""
) as demo:
gr.HTML("""
<div class="header">
<h1>π¬ MIMO - Complete Character Video Synthesis</h1>
<p>Full implementation matching the original research paper - Character Animation & Video Editing</p>
<p>
<a href="https://menyifang.github.io/projects/MIMO/index.html">π Project Page</a> |
<a href="https://github.com/menyifang/MIMO">π» GitHub</a> |
<a href="https://arxiv.org/abs/2409.16160">π Paper</a>
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>πΌοΈ Input Configuration</h3>")
input_image = gr.Image(
label="Character Image",
type="pil",
height=400
)
mode = gr.Radio(
label="Generation Mode",
choices=[
("π Character Animation", "animate"),
("π¬ Video Character Editing", "edit")
],
value="animate"
)
# Dynamic template loading
templates = mimo_model.get_available_templates()
if not templates:
gr.HTML("""
<div class="warning-box">
<b>β οΈ No Motion Templates Found</b><br/>
Click <b>"π§ Setup Models"</b> button below to download video templates.<br/>
Templates will be downloaded to: <code>./assets/video_template/</code>
</div>
""")
motion_template = gr.Dropdown(
label="Motion Template (Optional - see TEMPLATES_SETUP.md)",
choices=templates if templates else ["No templates - Upload manually or use reference image only"],
value=templates[0] if templates else None,
info="Templates provide motion guidance. Not required for basic image animation."
)
with gr.Row():
setup_btn = gr.Button("οΏ½ Setup Models", variant="secondary", scale=1)
load_btn = gr.Button("β‘ Load Model", variant="secondary", scale=1)
with gr.Row():
refresh_btn = gr.Button("οΏ½ Refresh Templates", variant="secondary", scale=1)
generate_btn = gr.Button("π¬ Generate Video", variant="primary", scale=2)
with gr.Column(scale=1):
gr.HTML("<h3>π₯ Output</h3>")
output_video = gr.Video(
label="Generated Video",
height=400
)
status_text = gr.Textbox(
label="Status",
interactive=False,
lines=4
)
# Mode information
gr.HTML("""
<div class="mode-info mode-animate">
<h4>π Character Animation Mode</h4>
<p><strong>Features:</strong> Character image + motion template β animated video</p>
<p><strong>Use case:</strong> Animate static characters with predefined motions</p>
<p><strong>Based on:</strong> run_animate.py functionality</p>
</div>
<div class="mode-info mode-edit">
<h4>π¬ Video Character Editing Mode</h4>
<p><strong>Features:</strong> Advanced editing with background blending, occlusion handling</p>
<p><strong>Use case:</strong> Replace characters in existing videos while preserving backgrounds</p>
<p><strong>Based on:</strong> run_edit.py functionality</p>
</div>
""")
gr.HTML("""
<div class="instructions-box">
<h4>π Instructions:</h4>
<ol>
<li><strong>First Time Setup:</strong> Click "π§ Setup Models" to download MIMO (~8GB, one-time)</li>
<li><strong>Load Model:</strong> Click "β‘ Load Model" to activate the model (required once per session)</li>
<li><strong>Upload Image:</strong> Upload a character image (clear, front-facing works best)</li>
<li><strong>Select Mode:</strong> Choose between Animation (simpler) or Editing (advanced)</li>
<li><strong>Pick Template:</strong> Select a motion template from the dropdown (or refresh to see new ones)</li>
<li><strong>Generate:</strong> Click "π¬ Generate Video" and wait for processing</li>
</ol>
<h4>π― Available Templates (11 total):</h4>
<p><strong>Sports:</strong> basketball_gym, nba_dunk, nba_pass, football</p>
<p><strong>Action:</strong> kungfu_desert, kungfu_match, parkour_climbing, BruceLee</p>
<p><strong>Dance:</strong> dance_indoor, irish_dance</p>
<p><strong>Synthetic:</strong> syn_basketball, syn_dancing, syn_football</p>
<p><strong>π‘ Model Persistence:</strong> Downloaded models persist across page refreshes! Just click "Load Model" to reactivate.</p>
<p><strong>β οΈ Timing:</strong> First setup takes 5-10 minutes. Model loading takes 30-60 seconds. Generation takes 2-5 minutes per video.</p>
</div>
""")
# Event handlers
def load_model_only(progress=gr.Progress()):
"""Load models without downloading (if already cached)"""
try:
# First check if already loaded
if mimo_model.is_loaded:
return "β
Model already loaded and ready! You can generate videos now."
# Re-check cache validity (in case models were just downloaded)
mimo_model._check_existing_models()
if not mimo_model._model_cache_valid:
return "β οΈ Models not found in cache. Please click 'π§ Setup Models' first to download (~8GB)."
progress(0.3, desc="Loading models from cache...")
load_success = mimo_model.load_model(lambda msg: progress(0.7, desc=msg))
if load_success:
progress(1.0, desc="β
Ready!")
return "β
Model loaded successfully! Ready to generate videos. Upload an image and select a template."
else:
return "β Model loading failed. Check logs for details or try 'Setup Models' button."
except Exception as e:
import traceback
traceback.print_exc()
return f"β Load failed: {str(e)[:200]}"
setup_btn.click(
fn=setup_models,
outputs=[status_text]
)
load_btn.click(
fn=load_model_only,
outputs=[status_text]
)
refresh_btn.click(
fn=refresh_templates,
outputs=[motion_template]
)
generate_btn.click(
fn=generate_video_gradio,
inputs=[input_image, motion_template, mode],
outputs=[output_video, status_text]
)
# Load examples (only if files exist)
example_files = [
["./assets/test_image/sugar.jpg", "sports_basketball_gym", "animate"],
["./assets/test_image/avatar.jpg", "dance_indoor_1", "animate"],
["./assets/test_image/cartoon1.png", "shorts_kungfu_desert1", "edit"],
["./assets/test_image/actorhq_A7S1.png", "syn_basketball_06_13", "edit"],
]
# Filter examples to only include files that exist
valid_examples = [ex for ex in example_files if os.path.exists(ex[0])]
if valid_examples:
gr.Examples(
examples=valid_examples,
inputs=[input_image, motion_template, mode],
label="π― Examples"
)
else:
print("β οΈ No example images found, skipping examples section")
return demo
if __name__ == "__main__":
# HF Spaces optimization - no auto-download to prevent timeout
if os.getenv("SPACE_ID"):
print("π Running on HuggingFace Spaces")
print("π¦ Models will download on first use to prevent build timeout")
else:
print("π» Running locally")
# Launch Gradio
demo = gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |