File size: 24,087 Bytes
79cf446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

# https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
import math
import warnings
from dataclasses import dataclass
from functools import partial
from typing import (
    Callable,
    Dict,
    Final,
    List,
    Literal,
    Optional,
    Sequence,
    Set,
    Tuple,
    Type,
    Union,
)

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.layers import (
    AttentionPoolLatent,
    DropPath,
    LayerType,
    Mlp,
    PatchDropout,
    PatchEmbed,
    resample_abs_pos_embed,
)
from timm.models._manipulate import checkpoint_seq, named_apply


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)  # noqa: E741
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    # type: (torch.Tensor, float, float, float, float) -> torch.Tensor
    r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first
    convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype.
    Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn
    from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """

    with torch.no_grad():
        dtype = tensor.dtype
        tensor_fp32 = tensor.float()
        tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b)
        tensor_dtype = tensor_fp32.to(dtype=dtype)
        tensor.copy_(tensor_dtype)


def init_weights(self):
    if self.pos_embed is not None:
        trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
    trunc_normal_(self.latent, std=self.latent_dim**-0.5)


def init_weights_vit_timm(module: nn.Module, name: str = "") -> None:
    """ViT weight initialization, original timm impl (for reproducibility)"""
    if isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=0.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, "init_weights"):
        module.init_weights()


class Attention(nn.Module):
    fused_attn: Final[bool]

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        # self.fused_attn = use_fused_attn()
        self.fused_attn = True

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, self.head_dim)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q,
                k,
                v,
                dropout_p=self.attn_drop.p if self.training else 0.0,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LayerScale(nn.Module):
    def __init__(
        self,
        dim: int,
        init_values: float = 1e-5,
        inplace: bool = False,
    ) -> None:
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        proj_drop: float = 0.0,
        attn_drop: float = 0.0,
        init_values: Optional[float] = None,
        drop_path: float = 0.0,
        act_layer: nn.Module = nn.GELU,
        norm_layer: nn.Module = nn.LayerNorm,
        mlp_layer: nn.Module = Mlp,
    ) -> None:
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
        )
        self.ls1 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = mlp_layer(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.ls2 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class VisionTransformer(nn.Module):
    """Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
        - https://arxiv.org/abs/2010.11929
    """

    dynamic_img_size: Final[bool]

    def __init__(
        self,
        img_size: Union[int, Tuple[int, int]] = 224,
        patch_size: Union[int, Tuple[int, int]] = 16,
        in_chans: int = 3,
        num_classes: int = 1000,
        global_pool: Literal["", "avg", "token", "map"] = "token",
        embed_dim: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        qk_norm: bool = False,
        init_values: Optional[float] = None,
        class_token: bool = True,
        no_embed_class: bool = False,
        reg_tokens: int = 0,
        pre_norm: bool = False,
        fc_norm: Optional[bool] = None,
        dynamic_img_size: bool = False,
        dynamic_img_pad: bool = False,
        drop_rate: float = 0.0,
        pos_drop_rate: float = 0.0,
        patch_drop_rate: float = 0.0,
        proj_drop_rate: float = 0.0,
        attn_drop_rate: float = 0.0,
        drop_path_rate: float = 0.0,
        weight_init: Literal["skip", "jax", "jax_nlhb", "moco", ""] = "",
        embed_layer: Callable = PatchEmbed,
        norm_layer: Optional[LayerType] = None,
        act_layer: Optional[LayerType] = None,
        block_fn: Type[nn.Module] = Block,
        mlp_layer: Type[nn.Module] = Mlp,
        ignore_head: bool = False,
    ) -> None:
        """
        Args:
            img_size: Input image size.
            patch_size: Patch size.
            in_chans: Number of image input channels.
            num_classes: Mumber of classes for classification head.
            global_pool: Type of global pooling for final sequence (default: 'token').
            embed_dim: Transformer embedding dimension.
            depth: Depth of transformer.
            num_heads: Number of attention heads.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            qkv_bias: Enable bias for qkv projections if True.
            init_values: Layer-scale init values (layer-scale enabled if not None).
            class_token: Use class token.
            no_embed_class: Don't include position embeddings for class (or reg) tokens.
            reg_tokens: Number of register tokens.
            fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
            drop_rate: Head dropout rate.
            pos_drop_rate: Position embedding dropout rate.
            attn_drop_rate: Attention dropout rate.
            drop_path_rate: Stochastic depth rate.
            weight_init: Weight initialization scheme.
            embed_layer: Patch embedding layer.
            norm_layer: Normalization layer.
            act_layer: MLP activation layer.
            block_fn: Transformer block layer.
        """
        super().__init__()
        assert global_pool in ("", "avg", "token", "map")
        assert class_token or global_pool != "token"
        use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
        # norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6)
        # act_layer = get_act_layer(act_layer) or nn.GELU
        norm_layer = partial(nn.LayerNorm, eps=1e-6)
        act_layer = nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = (
            embed_dim  # num_features for consistency with other models
        )
        self.num_prefix_tokens = 1 if class_token else 0
        self.num_prefix_tokens += reg_tokens
        self.num_reg_tokens = reg_tokens
        self.has_class_token = class_token
        self.no_embed_class = (
            no_embed_class  # don't embed prefix positions (includes reg)
        )
        self.dynamic_img_size = dynamic_img_size
        self.grad_checkpointing = False
        self.ignore_head = ignore_head

        embed_args = {}
        if dynamic_img_size:
            # flatten deferred until after pos embed
            embed_args.update(dict(strict_img_size=False, output_fmt="NHWC"))
        self.patch_embed = embed_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=not pre_norm,  # disable bias if pre-norm is used (e.g. CLIP)
            dynamic_img_pad=dynamic_img_pad,
            **embed_args,
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = (
            nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
        )
        self.reg_token = (
            nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None
        )
        embed_len = (
            num_patches if no_embed_class else num_patches + self.num_prefix_tokens
        )
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
        self.pos_drop = nn.Dropout(p=pos_drop_rate)
        if patch_drop_rate > 0:
            self.patch_drop = PatchDropout(
                patch_drop_rate,
                num_prefix_tokens=self.num_prefix_tokens,
            )
        else:
            self.patch_drop = nn.Identity()
        self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule
        self.blocks = nn.Sequential(
            *[
                block_fn(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_norm=qk_norm,
                    init_values=init_values,
                    proj_drop=proj_drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    act_layer=act_layer,
                    mlp_layer=mlp_layer,
                )
                for i in range(depth)
            ]
        )
        self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()

        # Classifier Head
        if global_pool == "map":
            AttentionPoolLatent.init_weights = init_weights
            self.attn_pool = AttentionPoolLatent(
                self.embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                norm_layer=norm_layer,
            )
        else:
            self.attn_pool = None
        self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
        self.head_drop = nn.Dropout(drop_rate)
        self.head = (
            nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        )

        if weight_init != "skip":
            self.init_weights(weight_init)

    def init_weights(self, mode: Literal["jax", "jax_nlhb", "moco", ""] = "") -> None:
        assert mode in ("jax", "jax_nlhb", "moco", "")
        # head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0
        trunc_normal_(self.pos_embed, std=0.02)
        if self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        named_apply(init_weights_vit_timm, self)

    @torch.jit.ignore
    def no_weight_decay(self) -> Set:
        return {"pos_embed", "cls_token", "dist_token"}

    @torch.jit.ignore
    def group_matcher(self, coarse: bool = False) -> Dict:
        return dict(
            stem=r"^cls_token|pos_embed|patch_embed",  # stem and embed
            blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))],
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable: bool = True) -> None:
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head

    def reset_classifier(self, num_classes: int, global_pool=None) -> None:
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ("", "avg", "token", "map")
            if global_pool == "map" and self.attn_pool is None:
                assert (
                    False
                ), "Cannot currently add attention pooling in reset_classifier()."
            elif global_pool != "map " and self.attn_pool is not None:
                self.attn_pool = None  # remove attention pooling
            self.global_pool = global_pool
        self.head = (
            nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        )

    def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
        if self.dynamic_img_size:
            B, H, W, C = x.shape
            pos_embed = resample_abs_pos_embed(
                self.pos_embed,
                (H, W),
                num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
            )
            x = x.view(B, -1, C)
        else:
            pos_embed = self.pos_embed

        to_cat = []
        if self.cls_token is not None:
            to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
        if self.reg_token is not None:
            to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))

        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + pos_embed
            if to_cat:
                x = torch.cat(to_cat + [x], dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if to_cat:
                x = torch.cat(to_cat + [x], dim=1)
            x = x + pos_embed

        return self.pos_drop(x)

    def _intermediate_layers(
        self,
        x: torch.Tensor,
        n: Union[int, Sequence] = 1,
    ) -> List[torch.Tensor]:
        outputs, num_blocks = [], len(self.blocks)
        take_indices = set(
            range(num_blocks - n, num_blocks) if isinstance(n, int) else n
        )

        # forward pass
        x = self.patch_embed(x)
        x = self._pos_embed(x)
        x = self.patch_drop(x)
        x = self.norm_pre(x)
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if i in take_indices:
                outputs.append(x)

        return outputs

    def get_intermediate_layers(
        self,
        x: torch.Tensor,
        n: Union[int, Sequence] = 1,
        reshape: bool = False,
        return_prefix_tokens: bool = False,
        norm: bool = False,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
        """Intermediate layer accessor (NOTE: This is a WIP experiment).
        Inspired by DINO / DINOv2 interface
        """
        # take last n blocks if n is an int, if in is a sequence, select by matching indices
        outputs = self._intermediate_layers(x, n)
        if norm:
            outputs = [self.norm(out) for out in outputs]
        prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs]
        outputs = [out[:, self.num_prefix_tokens :] for out in outputs]

        if reshape:
            grid_size = self.patch_embed.grid_size
            outputs = [
                out.reshape(x.shape[0], grid_size[0], grid_size[1], -1)
                .permute(0, 3, 1, 2)
                .contiguous()
                for out in outputs
            ]

        if return_prefix_tokens:
            return tuple(zip(outputs, prefix_tokens))
        return tuple(outputs)

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)
        x = self._pos_embed(x)
        x = self.patch_drop(x)
        x = self.norm_pre(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        x = self.norm(x)
        return x

    def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
        if self.attn_pool is not None:
            x = self.attn_pool(x)
        elif self.global_pool == "avg":
            x = x[:, self.num_prefix_tokens :].mean(dim=1)
        elif self.global_pool:
            x = x[:, 0]  # class token
        x = self.fc_norm(x)
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.forward_features(x)
        if not self.ignore_head:
            x = self.forward_head(x)
        return x


@dataclass
class SigLIPVisionCfg:
    width: int = 1152
    layers: Union[Tuple[int, int, int, int], int] = 27
    heads: int = 16
    patch_size: int = 14
    image_size: Union[Tuple[int, int], int] = 336
    global_pool: str = "map"
    mlp_ratio: float = 3.7362
    class_token: bool = False
    num_classes: int = 0
    use_checkpoint: bool = False


SigLIP_MODEL_CONFIG = {
    "siglip_so400m_patch14_384": {
        "image_size": 336,
        "patch_size": 14,
        "width": 1152,
        "layers": 27,
        "heads": 16,
        "mlp_ratio": 3.7362,
        "global_pool": "map",
        "use_checkpoint": False,
    },
    "siglip_so400m_patch14_224": {
        "image_size": 224,
        "patch_size": 14,
        "width": 1152,
        "layers": 27,
        "heads": 16,
        "mlp_ratio": 3.7362,
        "global_pool": "map",
        "use_checkpoint": False,
    },
    "siglip_large_patch16_384": {
        "image_size": 384,
        "patch_size": 16,
        "width": 1024,
        "layers": 24,
        "heads": 16,
        "mlp_ratio": 4,
        "global_pool": "map",
        "use_checkpoint": False,
    },
}


def create_siglip_vit(
    model_name: str = "siglip_so400m_patch14_384",
    image_size: int = 384,
    select_layer: int = -1,
    ckpt_path: str = "",
    **kwargs,
):
    assert (
        model_name in SigLIP_MODEL_CONFIG.keys()
    ), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}"

    vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name])

    if select_layer <= 0:
        layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1)
    else:
        layers = min(vision_cfg.layers, select_layer)

    model = VisionTransformer(
        img_size=image_size,
        patch_size=vision_cfg.patch_size,
        embed_dim=vision_cfg.width,
        depth=layers,
        num_heads=vision_cfg.heads,
        mlp_ratio=vision_cfg.mlp_ratio,
        class_token=vision_cfg.class_token,
        global_pool=vision_cfg.global_pool,
        ignore_head=kwargs.get("ignore_head", True),
        weight_init=kwargs.get("weight_init", "skip"),
        num_classes=0,
    )

    if ckpt_path:
        state_dict = torch.load(ckpt_path, map_location="cpu")

        incompatible_keys = model.load_state_dict(state_dict, strict=False)
        print(
            f"SigLIP-ViT restores from {ckpt_path},\n"
            f"\tincompatible_keys:', {incompatible_keys}."
        )

    return model