Spaces:
Runtime error
Runtime error
File size: 18,712 Bytes
12deb01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import torch
from utils.word_vectorizer import WordVectorizer, POS_enumerator
from utils.get_opt import get_opt
from models import MotionTransformer
from torch.utils.data import Dataset, DataLoader
from os.path import join as pjoin
from tqdm import tqdm
import numpy as np
from .evaluator_models import *
import os
import codecs as cs
import random
from torch.utils.data._utils.collate import default_collate
class EvaluationDataset(Dataset):
def __init__(self, opt, trainer, dataset, w_vectorizer, mm_num_samples, mm_num_repeats):
assert mm_num_samples < len(dataset)
print(opt.model_dir)
dataloader = DataLoader(dataset, batch_size=1, num_workers=1, shuffle=True)
epoch, it = trainer.load(pjoin(opt.model_dir, opt.which_epoch + '.tar'))
generated_motion = []
min_mov_length = 10 if opt.dataset_name == 't2m' else 6
trainer.eval_mode()
trainer.to(opt.device)
# Pre-process all target captions
mm_generated_motions = []
mm_idxs = np.random.choice(len(dataset), mm_num_samples, replace=False)
mm_idxs = np.sort(mm_idxs)
all_caption = []
all_m_lens = []
all_data = []
with torch.no_grad():
for i, data in tqdm(enumerate(dataloader)):
word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
all_data.append(data)
tokens = tokens[0].split('_')
mm_num_now = len(mm_generated_motions)
is_mm = True if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now])) else False
repeat_times = mm_num_repeats if is_mm else 1
m_lens = max(m_lens // opt.unit_length * opt.unit_length, min_mov_length * opt.unit_length)
m_lens = min(m_lens, opt.max_motion_length)
if isinstance(m_lens, int):
m_lens = torch.LongTensor([m_lens]).to(opt.device)
else:
m_lens = m_lens.to(opt.device)
for t in range(repeat_times):
all_m_lens.append(m_lens)
all_caption.extend(caption)
if is_mm:
mm_generated_motions.append(0)
all_m_lens = torch.stack(all_m_lens)
# Generate all sequences
with torch.no_grad():
all_pred_motions = trainer.generate(all_caption, all_m_lens, opt.dim_pose)
cur_idx = 0
mm_generated_motions = []
with torch.no_grad():
for i, data_dummy in tqdm(enumerate(dataloader)):
data = all_data[i]
word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
tokens = tokens[0].split('_')
mm_num_now = len(mm_generated_motions)
is_mm = True if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now])) else False
repeat_times = mm_num_repeats if is_mm else 1
mm_motions = []
m_lens = max(m_lens // opt.unit_length * opt.unit_length, min_mov_length * opt.unit_length)
m_lens = min(m_lens, opt.max_motion_length)
if isinstance(m_lens, int):
m_lens = torch.LongTensor([m_lens]).to(opt.device)
else:
m_lens = m_lens.to(opt.device)
for t in range(repeat_times):
m_len = m_lens[0].item()
pred_motions = all_pred_motions[cur_idx][:m_lens[0].item()]
assert pred_motions.shape[0] == m_lens[0].item()
cur_idx += 1
if t == 0:
sub_dict = {'motion': pred_motions.cpu().numpy(),
'length': pred_motions.shape[0],
'caption': caption[0],
'cap_len': cap_lens[0].item(),
'tokens': tokens}
generated_motion.append(sub_dict)
if is_mm:
mm_motions.append({
'motion': pred_motions.cpu().numpy(),
'length': m_lens[0].item()
})
if is_mm:
mm_generated_motions.append({'caption': caption[0],
'tokens': tokens,
'cap_len': cap_lens[0].item(),
'mm_motions': mm_motions})
self.generated_motion = generated_motion
self.mm_generated_motion = mm_generated_motions
self.opt = opt
self.w_vectorizer = w_vectorizer
def __len__(self):
return len(self.generated_motion)
def __getitem__(self, item):
data = self.generated_motion[item]
motion, m_length, caption, tokens = data['motion'], data['length'], data['caption'], data['tokens']
sent_len = data['cap_len']
pos_one_hots = []
word_embeddings = []
for token in tokens:
word_emb, pos_oh = self.w_vectorizer[token]
pos_one_hots.append(pos_oh[None, :])
word_embeddings.append(word_emb[None, :])
pos_one_hots = np.concatenate(pos_one_hots, axis=0)
word_embeddings = np.concatenate(word_embeddings, axis=0)
if m_length < self.opt.max_motion_length:
motion = np.concatenate([motion,
np.zeros((self.opt.max_motion_length - m_length, motion.shape[1]))
], axis=0)
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)
def collate_fn(batch):
batch.sort(key=lambda x: x[3], reverse=True)
return default_collate(batch)
'''For use of training text motion matching model, and evaluations'''
class Text2MotionDatasetV2(Dataset):
def __init__(self, opt, mean, std, split_file, w_vectorizer):
self.opt = opt
self.w_vectorizer = w_vectorizer
self.max_length = 20
self.pointer = 0
self.max_motion_length = opt.max_motion_length
min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24
data_dict = {}
id_list = []
with cs.open(split_file, 'r') as f:
for line in f.readlines():
id_list.append(line.strip())
new_name_list = []
length_list = []
for name in tqdm(id_list):
try:
motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
if (len(motion)) < min_motion_len or (len(motion) >= 200):
continue
text_data = []
flag = False
with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
for line in f.readlines():
text_dict = {}
line_split = line.strip().split('#')
caption = line_split[0]
tokens = line_split[1].split(' ')
f_tag = float(line_split[2])
to_tag = float(line_split[3])
f_tag = 0.0 if np.isnan(f_tag) else f_tag
to_tag = 0.0 if np.isnan(to_tag) else to_tag
text_dict['caption'] = caption
text_dict['tokens'] = tokens
if f_tag == 0.0 and to_tag == 0.0:
flag = True
text_data.append(text_dict)
else:
try:
n_motion = motion[int(f_tag*20) : int(to_tag*20)]
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
continue
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
while new_name in data_dict:
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
data_dict[new_name] = {'motion': n_motion,
'length': len(n_motion),
'text':[text_dict]}
new_name_list.append(new_name)
length_list.append(len(n_motion))
except:
print(line_split)
print(line_split[2], line_split[3], f_tag, to_tag, name)
# break
if flag:
data_dict[name] = {'motion': motion,
'length': len(motion),
'text': text_data}
new_name_list.append(name)
length_list.append(len(motion))
except:
pass
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
self.mean = mean
self.std = std
self.length_arr = np.array(length_list)
self.data_dict = data_dict
self.name_list = name_list
self.reset_max_len(self.max_length)
def reset_max_len(self, length):
assert length <= self.max_motion_length
self.pointer = np.searchsorted(self.length_arr, length)
print("Pointer Pointing at %d"%self.pointer)
self.max_length = length
def inv_transform(self, data):
return data * self.std + self.mean
def __len__(self):
return len(self.data_dict) - self.pointer
def __getitem__(self, item):
idx = self.pointer + item
data = self.data_dict[self.name_list[idx]]
motion, m_length, text_list = data['motion'], data['length'], data['text']
# Randomly select a caption
text_data = random.choice(text_list)
caption, tokens = text_data['caption'], text_data['tokens']
if len(tokens) < self.opt.max_text_len:
# pad with "unk"
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
sent_len = len(tokens)
tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len)
else:
# crop
tokens = tokens[:self.opt.max_text_len]
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
sent_len = len(tokens)
pos_one_hots = []
word_embeddings = []
for token in tokens:
word_emb, pos_oh = self.w_vectorizer[token]
pos_one_hots.append(pos_oh[None, :])
word_embeddings.append(word_emb[None, :])
pos_one_hots = np.concatenate(pos_one_hots, axis=0)
word_embeddings = np.concatenate(word_embeddings, axis=0)
# Crop the motions in to times of 4, and introduce small variations
if self.opt.unit_length < 10:
coin2 = np.random.choice(['single', 'single', 'double'])
else:
coin2 = 'single'
if coin2 == 'double':
m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length
elif coin2 == 'single':
m_length = (m_length // self.opt.unit_length) * self.opt.unit_length
idx = random.randint(0, len(motion) - m_length)
motion = motion[idx:idx+m_length]
"Z Normalization"
motion = (motion - self.mean) / self.std
if m_length < self.max_motion_length:
motion = np.concatenate([motion,
np.zeros((self.max_motion_length - m_length, motion.shape[1]))
], axis=0)
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)
def get_dataset_motion_loader(opt_path, batch_size, device):
opt = get_opt(opt_path, device)
# Configurations of T2M dataset and KIT dataset is almost the same
if opt.dataset_name == 't2m' or opt.dataset_name == 'kit':
print('Loading dataset %s ...' % opt.dataset_name)
mean = np.load(pjoin(opt.meta_dir, 'mean.npy'))
std = np.load(pjoin(opt.meta_dir, 'std.npy'))
w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
split_file = pjoin(opt.data_root, 'test.txt')
dataset = Text2MotionDatasetV2(opt, mean, std, split_file, w_vectorizer)
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=4, drop_last=True,
collate_fn=collate_fn, shuffle=True)
else:
raise KeyError('Dataset not Recognized !!')
print('Ground Truth Dataset Loading Completed!!!')
return dataloader, dataset
class MMGeneratedDataset(Dataset):
def __init__(self, opt, motion_dataset, w_vectorizer):
self.opt = opt
self.dataset = motion_dataset.mm_generated_motion
self.w_vectorizer = w_vectorizer
def __len__(self):
return len(self.dataset)
def __getitem__(self, item):
data = self.dataset[item]
mm_motions = data['mm_motions']
m_lens = []
motions = []
for mm_motion in mm_motions:
m_lens.append(mm_motion['length'])
motion = mm_motion['motion']
if len(motion) < self.opt.max_motion_length:
motion = np.concatenate([motion,
np.zeros((self.opt.max_motion_length - len(motion), motion.shape[1]))
], axis=0)
motion = motion[None, :]
motions.append(motion)
m_lens = np.array(m_lens, dtype=np.int)
motions = np.concatenate(motions, axis=0)
sort_indx = np.argsort(m_lens)[::-1].copy()
# print(m_lens)
# print(sort_indx)
# print(m_lens[sort_indx])
m_lens = m_lens[sort_indx]
motions = motions[sort_indx]
return motions, m_lens
def get_motion_loader(opt, batch_size, trainer, ground_truth_dataset, mm_num_samples, mm_num_repeats):
# Currently the configurations of two datasets are almost the same
if opt.dataset_name == 't2m' or opt.dataset_name == 'kit':
w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
else:
raise KeyError('Dataset not recognized!!')
print('Generating %s ...' % opt.name)
dataset = EvaluationDataset(opt, trainer, ground_truth_dataset, w_vectorizer, mm_num_samples, mm_num_repeats)
mm_dataset = MMGeneratedDataset(opt, dataset, w_vectorizer)
motion_loader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn, drop_last=True, num_workers=4)
mm_motion_loader = DataLoader(mm_dataset, batch_size=1, num_workers=1)
print('Generated Dataset Loading Completed!!!')
return motion_loader, mm_motion_loader
def build_models(opt):
movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
pos_size=opt.dim_pos_ohot,
hidden_size=opt.dim_text_hidden,
output_size=opt.dim_coemb_hidden,
device=opt.device)
motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
hidden_size=opt.dim_motion_hidden,
output_size=opt.dim_coemb_hidden,
device=opt.device)
checkpoint = torch.load(pjoin('data/pretrained_models', opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
map_location=opt.device)
movement_enc.load_state_dict(checkpoint['movement_encoder'])
text_enc.load_state_dict(checkpoint['text_encoder'])
motion_enc.load_state_dict(checkpoint['motion_encoder'])
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
return text_enc, motion_enc, movement_enc
class EvaluatorModelWrapper(object):
def __init__(self, opt):
if opt.dataset_name == 't2m':
opt.dim_pose = 263
elif opt.dataset_name == 'kit':
opt.dim_pose = 251
else:
raise KeyError('Dataset not Recognized!!!')
opt.dim_word = 300
opt.max_motion_length = 196
opt.dim_pos_ohot = len(POS_enumerator)
opt.dim_motion_hidden = 1024
opt.max_text_len = 20
opt.dim_text_hidden = 512
opt.dim_coemb_hidden = 512
self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
self.opt = opt
self.device = opt.device
self.text_encoder.to(opt.device)
self.motion_encoder.to(opt.device)
self.movement_encoder.to(opt.device)
self.text_encoder.eval()
self.motion_encoder.eval()
self.movement_encoder.eval()
# Please note that the results does not following the order of inputs
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
with torch.no_grad():
word_embs = word_embs.detach().to(self.device).float()
pos_ohot = pos_ohot.detach().to(self.device).float()
motions = motions.detach().to(self.device).float()
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
motions = motions[align_idx]
m_lens = m_lens[align_idx]
'''Movement Encoding'''
movements = self.movement_encoder(motions[..., :-4]).detach()
m_lens = m_lens // self.opt.unit_length
motion_embedding = self.motion_encoder(movements, m_lens)
'''Text Encoding'''
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
text_embedding = text_embedding[align_idx]
return text_embedding, motion_embedding
# Please note that the results does not following the order of inputs
def get_motion_embeddings(self, motions, m_lens):
with torch.no_grad():
motions = motions.detach().to(self.device).float()
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
motions = motions[align_idx]
m_lens = m_lens[align_idx]
'''Movement Encoding'''
movements = self.movement_encoder(motions[..., :-4]).detach()
m_lens = m_lens // self.opt.unit_length
motion_embedding = self.motion_encoder(movements, m_lens)
return motion_embedding
|