File size: 13,894 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Dict, Any

from ..builder import ATTENTIONS
from ..utils.stylization_block import StylizationBlock

try:
    from tutel import moe as tutel_moe
    from tutel import net
except ImportError:
    pass


class MOE(nn.Module):
    """
    Mixture of Experts (MoE) layer implementation using the Tutel MoE library.

    Args:
        num_experts (int): Number of experts.
        topk (int): Number of top experts to route tokens to.
        input_dim (int): Input dimension of the MoE layer.
        ffn_dim (int): Feed-forward network dimension for each expert.
        output_dim (int): Output dimension of the MoE layer.
        num_heads (int): Number of attention heads.
        max_seq_len (int): Maximum sequence length.
        gate_type (str): Type of gating mechanism (e.g., 'top_k').
        gate_noise (float): Noise factor for the gating mechanism.
    """

    def __init__(self, num_experts: int, topk: int, input_dim: int, ffn_dim: int, output_dim: int, 
                 num_heads: int, max_seq_len: int, gate_type: str, gate_noise: float):
        super().__init__()
        self.proj = nn.Linear(input_dim, output_dim)
        self.activation = nn.GELU()
        
        try:
            data_group = net.create_groups_from_world(group_count=1).data_group
        except Exception:
            data_group = None

        self.model = tutel_moe.moe_layer(
            gate_type={
                'type': gate_type,
                'k': topk,
                'fp32_gate': True,
                'gate_noise': gate_noise,
                'capacity_factor': 1.5
            },
            experts={
                'type': 'ffn',
                'count_per_node': num_experts,
                'hidden_size_per_expert': ffn_dim,
                'activation_fn': lambda x: F.gelu(x)
            },
            model_dim=input_dim,
            batch_prioritized_routing=True,
            is_gshard_loss=False,
            group=data_group
        )
        self.embedding = nn.Parameter(torch.randn(1, max_seq_len, num_heads, input_dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the MOE layer.

        Args:
            x (torch.Tensor): Input tensor of shape [B, T, H, D].

        Returns:
            torch.Tensor: Output tensor of shape [B, T, H, D].
        """
        B, T, H, D = x.shape
        x = x + self.embedding[:, :T, :, :]
        x = x.reshape(-1, D)
        y = self.proj(self.activation(self.model(x)))
        self.aux_loss = self.model.l_aux
        y = y.reshape(B, T, H, -1)
        return y


def get_ffn(latent_dim: int, ffn_dim: int) -> nn.Sequential:
    """
    Create a feed-forward network (FFN) block.

    Args:
        latent_dim (int): Input/output dimension of the FFN.
        ffn_dim (int): Hidden dimension of the FFN.

    Returns:
        nn.Sequential: A sequential block consisting of two linear layers and a GELU activation in between.
    """
    return nn.Sequential(nn.Linear(latent_dim, ffn_dim), nn.GELU(), nn.Linear(ffn_dim, latent_dim))


@ATTENTIONS.register_module()
class SAMI(nn.Module):
    """
    SAMI: Self-Attention-based MoE Integration model for motion generation.

    Args:
        latent_dim (int): Dimension of the latent space for motion input.
        text_latent_dim (int): Dimension of the latent space for text input.
        num_heads (int): Number of motion attention heads.
        num_text_heads (int): Number of text attention heads.
        num_experts (int): Number of experts for MoE.
        topk (int): Number of top experts to route tokens to.
        gate_type (str): Type of gating mechanism.
        gate_noise (float): Noise factor for the gating mechanism.
        ffn_dim (int): Dimension of the feed-forward network.
        time_embed_dim (int): Dimension of the time embedding.
        max_seq_len (int): Maximum sequence length for motion data.
        max_text_seq_len (int): Maximum sequence length for text data.
        dropout (float): Dropout probability.
        norm (str): Type of normalization ('LayerNorm').
        att_balance (bool): Whether to balance attention weights between motion and text.
        fine_mode (bool): Whether to use fine-grained features.
        mask_cond (float): Masking condition for fine-tuning.
    """

    def __init__(self,
                 latent_dim: int,
                 text_latent_dim: int,
                 num_heads: int,
                 num_text_heads: int,
                 num_experts: int,
                 topk: int,
                 gate_type: str,
                 gate_noise: float,
                 ffn_dim: int,
                 time_embed_dim: int,
                 max_seq_len: int,
                 max_text_seq_len: int,
                 dropout: float,
                 norm: str = "LayerNorm",
                 att_balance: bool = False,
                 fine_mode: bool = False,
                 mask_cond: float = 0):
        super().__init__()
        self.latent_dim = latent_dim
        self.num_heads = num_heads
        self.num_text_heads = num_text_heads
        self.max_seq_len = max_seq_len

        # Normalization
        Norm = nn.LayerNorm
        self.norm = Norm(latent_dim)
        self.text_norm = Norm(text_latent_dim)

        # MoE Layers for motion and text
        self.sigma = nn.Parameter(torch.Tensor([100]))
        self.time = torch.arange(max_seq_len) / max_seq_len
        self.text_moe = MOE(num_experts, topk, text_latent_dim, text_latent_dim * 4, 2 * latent_dim,
                            num_text_heads, max_text_seq_len, gate_type, gate_noise)
        self.motion_moe = MOE(num_experts, topk, latent_dim, latent_dim * 4, 3 * latent_dim,
                              num_heads, max_seq_len, gate_type, gate_noise)

        # Key-motion and attention blocks
        self.key_motion = nn.Parameter(torch.randn(max_seq_len, latent_dim))
        self.body_weight = nn.Parameter(torch.randn(num_heads, num_heads))

        # Feedforward networks for state, velocity, acceleration, and jerk
        self.template_s = get_ffn(latent_dim, ffn_dim)
        self.template_v = get_ffn(latent_dim, ffn_dim)
        self.template_a = get_ffn(latent_dim, ffn_dim)
        self.template_j = get_ffn(latent_dim, ffn_dim)

        # Time embedding block
        self.template_t = nn.Sequential(nn.Linear(latent_dim, ffn_dim), nn.GELU(), nn.Linear(ffn_dim, 1))
        self.t_sigma = nn.Parameter(torch.Tensor([1]))

        # Output projection
        self.proj_out = StylizationBlock(latent_dim * num_heads, time_embed_dim, dropout)
        self.att_balance = att_balance
        if self.att_balance:
            self.motion_coef = nn.Parameter(torch.Tensor([0]))
            self.text_coef = nn.Parameter(torch.Tensor([0]))

        self.fine_mode = fine_mode
        self.mask_cond = mask_cond

    def forward(self, x: torch.Tensor, xf: torch.Tensor, emb: torch.Tensor, src_mask: torch.Tensor,
                cond_type: torch.Tensor, motion_length: torch.Tensor, num_intervals: int, **kwargs: Dict[str, Any]) -> torch.Tensor:
        """
        Forward pass of SAMI.

        Args:
            x (torch.Tensor): Motion input tensor of shape [B, T, D].
            xf (torch.Tensor): Text input tensor of shape [B, N, P].
            emb (torch.Tensor): Time embedding tensor.
            src_mask (torch.Tensor): Source mask tensor of shape [B, T].
            cond_type (torch.Tensor): Conditioning type tensor of shape [B, ?].
            motion_length (torch.Tensor): Motion length tensor.
            num_intervals (int): Number of intervals for the motion.

        Returns:
            torch.Tensor: Output tensor after motion and text MoE integration.
        """
        B, T, D = x.shape
        N = xf.shape[1] + x.shape[1]
        H = self.num_heads
        L = self.latent_dim
        
        x = x.reshape(B, T, H, -1)
        if self.fine_mode:
            text_feat = xf.reshape(B, self.num_text_heads, xf.shape[1], xf.shape[2]).permute(0, 2, 1, 3)
        else:
            text_feat = xf.reshape(B, xf.shape[1], self.num_text_heads, -1)
        
        # MoE Layers for text and motion features
        text_feat = self.text_moe(self.text_norm(text_feat))
        motion_feat = self.motion_moe(self.norm(x))

        # Weighted combination of motion features
        body_weight = F.softmax(self.body_weight, dim=1)
        body_value = motion_feat[:, :, :, :L]
        body_feat = torch.einsum('hl,bnld->bnhd', body_weight, body_value)
        body_feat = body_feat.reshape(B, T, D)

        # Apply the source mask and combine key-text and key-motion
        src_mask = src_mask.view(B, T, 1, 1)
        key_text = text_feat[:, :, :, :L].contiguous()
        
        # Handle conditional types and masks
        if self.fine_mode:
            text_cond_type = torch.cat((cond_type[:, :7, :] % 10 > self.mask_cond, cond_type[:, 7:8, :] % 10 > 0), 1).float().unsqueeze(-1)
            text_cond_type = text_cond_type.permute(0, 2, 1, 3)
            text_cond_type = text_cond_type.repeat(1, key_text.shape[1], 1, 1)
        else:
            text_cond_type = (cond_type % 10 > 0).float().unsqueeze(-1)
        
        key_text = key_text + (1 - text_cond_type) * -1000000
        if self.num_text_heads == 1:
            key_text = key_text.repeat(1, 1, H, 1)

        key_motion = motion_feat[:, :, :, L:2 * L].contiguous()
        key_motion = key_motion + (1 - src_mask) * -1000000

        # Attention balance between motion and text
        if self.att_balance:
            motion_coef = torch.sigmoid(self.motion_coef)
            text_coef = torch.sigmoid(self.text_coef)
            key_motion = F.softmax(key_motion, dim=1) * motion_coef
            key_text = F.softmax(key_text, dim=1) * text_coef
            sum_coef = motion_coef.repeat(B) + text_coef.repeat(B) * text_cond_type.view(B)
            sum_coef = sum_coef.view(B, 1, 1, 1)
            key_motion = key_motion / sum_coef
            key_text = key_text / sum_coef
            key = torch.cat((key_text, key_motion), dim=1)
        else:
            key = torch.cat((key_text, key_motion), dim=1)
            key = F.softmax(key.view(B, N, H, -1), dim=1)

        # Value combination for text and motion
        value_text = text_feat[:, :, :, L:].contiguous() * text_cond_type
        if self.num_text_heads == 1:
            value_text = value_text.repeat(1, 1, H, 1)
        value_motion = motion_feat[:, :, :, 2 * L:].contiguous() * src_mask
        value = torch.cat((value_text, value_motion), dim=1).view(B, N, H, -1)

        # Calculate the attention-weighted template
        template = torch.einsum('bnhd,bnhl->bhdl', key, value)
        template_t_feat = self.template_t(template)
        template_t = torch.sigmoid(template_t_feat / self.t_sigma)
        template_t = template_t * motion_length.view(B, 1, 1, 1)
        template_t = template_t / self.max_seq_len

        org_t = self.time[:T].type_as(x)

        # Handle time intervals for the motion
        NI = num_intervals
        t = org_t.clone().view(1, 1, -1, 1, 1).repeat(B // NI, NI, 1, 1, 1)
        template_t = template_t.view(-1, NI, H, L)
        motion_length = motion_length.view(-1, NI)
        for b_ix in range(B // NI):
            sum_frames = 0
            for i in range(NI):
                t[b_ix, i] += sum_frames / self.max_seq_len
                template_t[b_ix, i] += sum_frames / self.max_seq_len
                sum_frames += motion_length[b_ix, i]
        template_t = template_t.permute(0, 2, 1, 3).unsqueeze(1).repeat(1, NI, 1, 1, 1)
        template_t = template_t.reshape(B, 1, H, -1)

        time_delta = t.view(B, -1, 1, 1) - template_t
        time_delta = time_delta * self.max_seq_len
        time_sqr = time_delta * time_delta
        time_coef = F.softmax(-time_sqr / self.sigma, dim=-1)

        # Reshape and repeat templates for Taylor expansion
        template = template.view(-1, NI, H, L, L)
        template = template.permute(0, 2, 1, 3, 4).unsqueeze(1)
        template = template.repeat(1, NI, 1, 1, 1, 1)
        template = template.reshape(B, H, -1, L)

        # Taylor expansion for state (s), velocity (v), acceleration (a), jerk (j)
        template_s = self.template_s(template)
        template_v = self.template_v(template)
        template_a = self.template_a(template)
        template_j = self.template_j(template)

        template_t = template_t.view(B, H, -1, 1)
        template_a0 = template_s - template_v * template_t + template_a * template_t * template_t - template_j * template_t * template_t * template_t
        template_a1 = template_v - 2 * template_a * template_t + 3 * template_j * template_t * template_t
        template_a2 = template_a - 3 * template_j * template_t
        template_a3 = template_j

        # Calculate the final time-dependent output using the Taylor expansion
        a0 = torch.einsum('bnhd,bhdl->bnhl', time_coef, template_a0).reshape(B, T, D)
        a1 = torch.einsum('bnhd,bhdl->bnhl', time_coef, template_a1).reshape(B, T, D)
        a2 = torch.einsum('bnhd,bhdl->bnhl', time_coef, template_a2).reshape(B, T, D)
        a3 = torch.einsum('bnhd,bhdl->bnhl', time_coef, template_a3).reshape(B, T, D)

        t = t.view(B, -1, 1)
        y_t = a0 + a1 * t + a2 * t * t + a3 * t * t * t

        # Combine with body features and output the final result
        y_s = body_feat
        y = x.reshape(B, T, D) + self.proj_out(y_s + y_t, emb)

        if self.training:
            self.aux_loss = self.text_moe.aux_loss + self.motion_moe.aux_loss
            mu = template_t_feat.squeeze(-1).mean(dim=-1)
            logvar = torch.log(template_t_feat.squeeze(-1).std(dim=-1))
            self.kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())

        return y