File size: 8,729 Bytes
cbd589e 9def7a4 cbd589e ec41cb6 cbd589e ec41cb6 9def7a4 8d43fbe 4c029aa 8d43fbe 0d436b4 8d43fbe 0d436b4 8d43fbe 0d436b4 cbd589e 48092b3 cbd589e 48092b3 cbd589e 48092b3 cbd589e 48092b3 cbd589e 48092b3 cbd589e 8919dbf 2253b37 cbd589e 8d43fbe cbd589e 2253b37 cbd589e 8919dbf 2253b37 cbd589e 8d43fbe cbd589e 2253b37 cbd589e 8919dbf 2253b37 0d436b4 8d43fbe 0d436b4 cbd589e 2253b37 cbd589e 2253b37 cbd589e 2253b37 cbd589e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
#!/usr/bin/env python3
#
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import logging
import shutil
import tempfile
import time
import urllib.request
from datetime import datetime
import gradio as gr
import torch
from pydub import AudioSegment
from separate import get_file, load_audio, load_model, separate
examples = [
"yesterday-once-more-Carpenters.mp3",
"das-beste-Silbermond.mp3",
"hotel-in-california.mp3",
"起风了.mp3",
]
for name in examples:
filename = get_file(
"csukuangfj/spleeter-torch",
name,
subfolder="test_wavs",
)
shutil.copyfile(filename, name)
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process_url(url: str):
logging.info(f"Processing URL: {url}")
with tempfile.NamedTemporaryFile() as f:
try:
urllib.request.urlretrieve(url, f.name)
return process(in_filename=f.name)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
def process_uploaded_file(in_filename: str):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for separation"',
"result_item_error",
)
logging.info(f"Processing uploaded file: {in_filename}")
try:
return process(in_filename=in_filename)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
def process_microphone(in_filename: str):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first click 'Record from microphone', speak, "
"click 'Stop recording', and then "
"click the button 'submit for separation'",
"result_item_error",
)
logging.info(f"Processing microphone: {in_filename}")
try:
return process(in_filename=in_filename)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
@torch.no_grad()
def process(in_filename: str):
logging.info(f"in_filename: {in_filename}")
waveform = load_audio(in_filename)
duration = waveform.shape[0] / 44100 # in seconds
vocals = load_model("vocals.pt")
accompaniment = load_model("accompaniment.pt")
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
logging.info(f"Started at {date_time}")
start = time.time()
vocals_wave, accompaniment_wave = separate(vocals, accompaniment, waveform)
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
end = time.time()
vocals_wave = (vocals_wave.t() * 32768).to(torch.int16)
accompaniment_wave = (accompaniment_wave.t() * 32768).to(torch.int16)
vocals_sound = AudioSegment(
data=vocals_wave.numpy().tobytes(), sample_width=2, frame_rate=44100, channels=2
)
vocals_filename = in_filename + "-vocals.mp3"
vocals_sound.export(vocals_filename, format="mp3", bitrate="128k")
accompaniment_sound = AudioSegment(
data=accompaniment_wave.numpy().tobytes(),
sample_width=2,
frame_rate=44100,
channels=2,
)
accompaniment_filename = in_filename + "-accompaniment.mp3"
accompaniment_sound.export(accompaniment_filename, format="mp3", bitrate="128k")
rtf = (end - start) / duration
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
info = f"""
Input duration : {duration: .3f} s <br/>
Processing time: {end - start: .3f} s <br/>
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
"""
logging.info(info)
return vocals_filename, accompaniment_filename, build_html_output(info)
title = "# Music source separation with Spleeter in PyTorch"
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
with gr.Tabs():
with gr.TabItem("Upload from disk"):
uploaded_file = gr.Audio(
source="upload", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Upload from disk",
)
upload_button = gr.Button("Submit for separation")
uploaded_html_info = gr.HTML(label="Info")
uploaded_vocals = gr.Audio(label="vocals")
uploaded_accompaniment = gr.Audio(label="accompaniment")
gr.Examples(
examples=examples,
inputs=[uploaded_file],
outputs=[uploaded_vocals, uploaded_accompaniment, uploaded_html_info],
fn=process_uploaded_file,
)
with gr.TabItem("Record from microphone"):
microphone = gr.Audio(
source="microphone", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Record from microphone",
)
record_button = gr.Button("Submit for separation")
recorded_html_info = gr.HTML(label="Info")
recorded_vocals = gr.Audio(label="vocals")
recorded_accompaniment = gr.Audio(label="accompaniment")
gr.Examples(
examples=examples,
inputs=[microphone],
outputs=[recorded_vocals, recorded_accompaniment, recorded_html_info],
fn=process_microphone,
)
with gr.TabItem("From URL"):
url_textbox = gr.Textbox(
max_lines=1,
placeholder="URL to an audio file",
label="URL",
interactive=True,
)
url_button = gr.Button("Submit for separation")
url_html_info = gr.HTML(label="Info")
url_vocals = gr.Audio(label="vocals")
url_accompaniment = gr.Audio(label="accompaniment")
gr.Examples(
examples=[
"https://huggingface.co/csukuangfj/spleeter-torch/resolve/main/test_wavs/yesterday-once-more-Carpenters.mp3",
"https://huggingface.co/csukuangfj/spleeter-torch/resolve/main/test_wavs/das-beste-Silbermond.mp3",
"https://huggingface.co/csukuangfj/spleeter-torch/resolve/main/test_wavs/hotel-in-california.mp3",
],
inputs=[url_textbox],
outputs=[url_vocals, url_accompaniment, recorded_html_info],
fn=process_url,
)
upload_button.click(
process_uploaded_file,
inputs=[uploaded_file],
outputs=[uploaded_vocals, uploaded_accompaniment, uploaded_html_info],
)
record_button.click(
process_microphone,
inputs=[microphone],
outputs=[recorded_vocals, recorded_accompaniment, recorded_html_info],
)
url_button.click(
process_url,
inputs=[url_textbox],
outputs=[url_vocals, url_accompaniment, url_html_info],
)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|