Spaces:
Running
Running
File size: 4,046 Bytes
4eb7c20 dd06629 4eb7c20 dd06629 4eb7c20 dd06629 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 a044f10 4eb7c20 2ef412f 4eb7c20 2ef412f dd06629 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 8fcf400 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 2ef412f 4eb7c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import cv2
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import torch
from doctr.io import DocumentFile
from doctr.utils.visualization import visualize_page
from backend.pytorch import DET_ARCHS, RECO_ARCHS, forward_image, load_predictor
forward_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main(det_archs, reco_archs):
"""Build a streamlit layout"""
# Wide mode
st.set_page_config(layout="wide")
# Designing the interface
st.title("docTR: Document Text Recognition")
# For newline
st.write("\n")
# Instructions
st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*")
# Set the columns
cols = st.columns((1, 1, 1, 1))
cols[0].subheader("Input page")
cols[1].subheader("Segmentation heatmap")
cols[2].subheader("OCR output")
cols[3].subheader("Page reconstitution")
# Sidebar
# File selection
st.sidebar.title("Document selection")
# Choose your own image
uploaded_file = st.sidebar.file_uploader("Upload files", type=["pdf", "png", "jpeg", "jpg"])
if uploaded_file is not None:
if uploaded_file.name.endswith(".pdf"):
doc = DocumentFile.from_pdf(uploaded_file.read())
else:
doc = DocumentFile.from_images(uploaded_file.read())
page_idx = st.sidebar.selectbox("Page selection", [idx + 1 for idx in range(len(doc))]) - 1
page = doc[page_idx]
cols[0].image(page)
# Model selection
st.sidebar.title("Model selection")
det_arch = st.sidebar.selectbox("Text detection model", det_archs)
reco_arch = st.sidebar.selectbox("Text recognition model", reco_archs)
# For newline
st.sidebar.write("\n")
# Only straight pages or possible rotation
st.sidebar.title("Parameters")
assume_straight_pages = st.sidebar.checkbox("Assume straight pages", value=True)
st.sidebar.write("\n")
# Straighten pages
straighten_pages = st.sidebar.checkbox("Straighten pages", value=False)
st.sidebar.write("\n")
# Binarization threshold
bin_thresh = st.sidebar.slider("Binarization threshold", min_value=0.1, max_value=0.9, value=0.3, step=0.1)
st.sidebar.write("\n")
if st.sidebar.button("Analyze page"):
if uploaded_file is None:
st.sidebar.write("Please upload a document")
else:
with st.spinner("Loading model..."):
predictor = load_predictor(
det_arch, reco_arch, assume_straight_pages, straighten_pages, bin_thresh, forward_device
)
with st.spinner("Analyzing..."):
# Forward the image to the model
seg_map = forward_image(predictor, page, forward_device)
seg_map = np.squeeze(seg_map)
seg_map = cv2.resize(seg_map, (page.shape[1], page.shape[0]), interpolation=cv2.INTER_LINEAR)
# Plot the raw heatmap
fig, ax = plt.subplots()
ax.imshow(seg_map)
ax.axis("off")
cols[1].pyplot(fig)
# Plot OCR output
out = predictor([page])
fig = visualize_page(out.pages[0].export(), out.pages[0].page, interactive=False, add_labels=False)
cols[2].pyplot(fig)
# Page reconsitution under input page
page_export = out.pages[0].export()
if assume_straight_pages or (not assume_straight_pages and straighten_pages):
img = out.pages[0].synthesize()
cols[3].image(img, clamp=True)
# Display JSON
st.markdown("\nHere are your analysis results in JSON format:")
st.json(page_export)
if __name__ == "__main__":
main(DET_ARCHS, RECO_ARCHS)
|