File size: 13,742 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
import sys
from typing import Tuple, Dict, List, Optional, Any
import numpy as np
from collections import Counter
from scipy.stats import hmean
from mir_eval.transcription import precision_recall_f1_overlap
from mir_eval.multipitch import evaluate
from mir_eval.melody import to_cent_voicing, raw_pitch_accuracy, raw_chroma_accuracy, overall_accuracy
from mir_eval.util import midi_to_hz
from utils.note_event_dataclasses import Note
EPS = sys.float_info.epsilon
def f1_measure(p, r):
return hmean([p + EPS, r + EPS]) - EPS
def round_float(l=[], ndigits=4):
return [round(x, ndigits) for x in l]
# Convert Notes to pitches and intervals for mir_eval note-wise evaluation
def extract_pitches_intervals_from_notes(notes: List[Note], is_drum: bool = False) -> Dict[str, np.ndarray]:
# drum offsets will be ignored anyways...
pitches = [midi_to_hz(n.pitch) for n in notes]
if is_drum:
intervals = [[n.onset, n.onset + 0.008] for n in notes]
else:
intervals = [[n.onset, n.offset] for n in notes]
return {
"pitches": np.array(pitches), # (L,)
"intervals": np.array(intervals), # (L, 2)
}
# Convert Notes to time and freqs for mir_eval frame-wise evaluation
def extract_frame_time_freq_from_notes(notes: List[Note],
is_drum: bool = False,
hop_size_sec: float = 0.0625) -> Dict[str, np.ndarray]:
if len(notes) == 0:
return {
"time": np.array([]),
"freqs": [[]],
"roll": np.zeros((0, 128)),
}
# drum offsets will be ignored anyways...
note_pitches = [n.pitch for n in notes]
last_offset = max([n.offset for n in notes[-20:]])
shape = (int(last_offset / hop_size_sec), 128)
roll = np.zeros(shape)
if is_drum:
frame_intervals = [[int(n.onset / hop_size_sec), int(n.onset / hop_size_sec) + 1] for n in notes]
else:
frame_intervals = [[
int(n.onset / hop_size_sec),
max(int(n.offset / hop_size_sec),
int(n.onset / hop_size_sec) + 1)
] for n in notes]
# create frame-level piano-roll
for note_pitch, (frame_onset, frame_offset) in zip(note_pitches, frame_intervals):
roll[frame_onset:frame_offset, note_pitch] = 1
# take frequency in the range of [16, 110] due to the limitation of mir_eval
roll[:, :16] = 0
roll[:, 110:] = 0
time = np.arange(shape[0])
frame_pitches = [roll[t, :].nonzero()[0] for t in time]
return {
"time": time * hop_size_sec,
"freqs": [np.array([midi_to_hz(p) for p in pitches]) for pitches in frame_pitches],
"roll": roll,
}
# Evaluation: Single instrument Note Onset F1 & OnsetOffset F1
def mir_eval_note_f1(est_pitches: np.ndarray,
est_intervals: np.ndarray,
ref_pitches: np.ndarray,
ref_intervals: np.ndarray,
is_drum: bool = False,
add_micro_metric: bool = False,
suffix: Optional[str] = None,
onset_tolerance: float = 0.05) -> Dict[str, Any]:
""" Instrument-agnostic Note F1 score
Args:
est_pitches (np.ndarray): Estimated pitches (Hz) shape=(n,)
est_intervals (np.ndarray): Estimated intervals (seconds) shape=(n, 2)
ref_pitches (np.ndarray): Reference pitches (Hz) shape=(n,)
ref_intervals (np.ndarray): Reference intervals (seconds) shape=(n, 2)
is_drum (bool, optional): Whether the instrument is drum. Defaults to False.
suffix (Optional[str], optional): Suffix to add to the metric names. Defaults to None.
Returns:
Dict[str, Any]: Instrument-agnostic Note F1 score. np.nan if empty.
"""
if len(ref_pitches) == 0 and len(est_pitches) == 0:
metrics = {
'onset_f': np.nan,
'offset_f': np.nan,
}
onset_p, onset_r, offset_p, offset_r = np.nan, np.nan, np.nan, np.nan
elif len(ref_pitches) == 0 and len(est_pitches) != 0:
metrics = {
'onset_f': np.nan, # No false negatives, recall and F1 will be NaN
'offset_f': np.nan, # No false negatives, recall and F1 will be NaN
}
onset_p, onset_r, offset_p, offset_r = 0., np.nan, 0., np.nan
# Add the following elif case to handle the situation when there are reference pitches but no estimated pitches
elif len(ref_pitches) != 0 and len(est_pitches) == 0:
metrics = {
'onset_f': 0., # No false positives, precision is NaN. recall and F1 are 0.
'offset_f': 0., # No false positives, precision is NaN. recall and F1 are 0.
}
onset_p, onset_r, offset_p, offset_r = np.nan, 0., np.nan, 0.
else:
metrics = {}
onset_p, onset_r, metrics['onset_f'], _ = precision_recall_f1_overlap(ref_intervals,
ref_pitches,
est_intervals,
est_pitches,
onset_tolerance=onset_tolerance,
pitch_tolerance=50.,
offset_ratio=None)
if is_drum is not True:
offset_p, offset_r, metrics['offset_f'], _ = precision_recall_f1_overlap(ref_intervals,
ref_pitches,
est_intervals,
est_pitches,
onset_tolerance=onset_tolerance,
pitch_tolerance=50.,
offset_ratio=0.2)
if add_micro_metric is True:
metrics['micro_onset_p'] = {'value': onset_p, 'weight': len(est_pitches)}
metrics['micro_onset_r'] = {'value': onset_r, 'weight': len(ref_pitches)}
if is_drum is not True:
metrics['micro_offset_p'] = {'value': offset_p, 'weight': len(est_pitches)}
metrics['micro_offset_r'] = {'value': offset_r, 'weight': len(ref_pitches)}
if is_drum:
# remove offset metrics, and add suffix '_drum' for drum onset metrics
metrics = {k + '_drum' if 'onset' in k else k: v for k, v in metrics.items() if 'offset' not in k}
if suffix:
metrics = {k + '_' + suffix: v for k, v in metrics.items()}
return metrics
# Evaluation: Frame F1
def mir_eval_frame_f1(est_time_freqs: Dict[str, List[np.ndarray]],
ref_time_freqs: Dict[str, List[np.ndarray]],
suffix: Optional[str] = None) -> Dict[str, float]:
""" Instrument-agnostic Note F1 score
Args:
est_time_freqs Dict[str, List[np.ndarray]]: Estimated time, freqs and piano-roll
{
'time': np.ndarray, Estimated time indices in seconds.
'freqs': List[np.ndarray], Estimated frequencies in Hz.
'roll': np.ndarray, Estimated piano-roll.
}
ref_time_freqs Dict[str, List[np.ndarray]]: Reference time, freqs and piano-roll
{
'time': np.ndarray, Reference time indices in seconds.
'freqs': List[np.ndarray], Reference frequencies in Hz.
'roll': np.ndarray, Reference piano-roll.
}
suffix (Optional[str], optional): Suffix to add to the metric names. Defaults to None.
Returns:
Tuple[Counter, Dict]: Instrument-agnostic Note F1 score
"""
if np.sum(ref_time_freqs['roll']) == 0 and np.sum(est_time_freqs['roll']) == 0:
metrics = {
'frame_f': np.nan,
'frame_f_pc': np.nan,
}
elif np.sum(ref_time_freqs['roll']) == 0 and np.sum(est_time_freqs['roll']) != 0:
metrics = {
'frame_f': np.nan, # F1-score will be NaN
'frame_f_pc': np.nan,
}
# Add the following elif case to handle the situation when there are reference pitches but no estimated pitches
elif np.sum(ref_time_freqs['roll']) != 0 and np.sum(est_time_freqs['roll']) == 0:
metrics = {
'frame_f': 0., # F1-score will be 0.
'frame_f_pc': 0.,
}
else:
# frame-wise evaluation
res = evaluate(ref_time=ref_time_freqs['time'],
ref_freqs=ref_time_freqs['freqs'],
est_time=est_time_freqs['time'],
est_freqs=est_time_freqs['freqs'])
frame_f = f1_measure(res['Precision'], res['Recall'])
frame_f_pc = f1_measure(res['Chroma Precision'], res['Chroma Recall'])
metrics = {
'frame_f': frame_f,
'frame_f_pc': frame_f_pc,
}
if suffix:
metrics = {k + '_' + suffix: v for k, v in metrics.items()}
return metrics
# Evaluation: Melody metrics
def mir_eval_melody_metric(est_pitches: np.ndarray,
est_intervals: np.ndarray,
ref_pitches: np.ndarray,
ref_intervals: np.ndarray,
cent_tolerance: float = 50,
suffix: Optional[str] = None) -> Dict[str, Any]:
""" Melody metrics: Raw Pitch Accuracy, Raw Chroma Accuracy, Overall Accuracy
Args:
est_pitches (np.ndarray): Estimated pitches (Hz) shape=(n,)
est_intervals (np.ndarray): Estimated intervals (seconds) shape=(n, 2)
ref_pitches (np.ndarray): Reference pitches (Hz) shape=(n,)
ref_intervals (np.ndarray): Reference intervals (seconds) shape=(n, 2)
cent_tolerance (float, optional): Cent tolerance. Defaults to 50.
suffix (Optional[str], optional): Suffix to add to the metric names. Defaults to None.
Returns:
Dict[str, Any]: RPA, RCA, OA
"""
try:
(ref_v, ref_c, est_v, est_c) = to_cent_voicing(ref_intervals[:, 0:1],
ref_pitches,
est_intervals[:, 0:1],
est_pitches,
hop=0.01)
# Your code here to calculate rpa based on the outputs of to_cent_voicing
except Exception as e:
print(f"Error occurred: {e}")
return {
'melody_rpa' + ('_' + suffix if suffix else ''): np.nan,
'melody_rca' + ('_' + suffix if suffix else ''): np.nan,
'melody_oa' + ('_' + suffix if suffix else ''): np.nan,
}
rpa = raw_pitch_accuracy(ref_v, ref_c, est_v, est_c, cent_tolerance)
rca = raw_chroma_accuracy(ref_v, ref_c, est_v, est_c, cent_tolerance)
oa = overall_accuracy(ref_v, ref_c, est_v, est_c, cent_tolerance)
return {
'melody_rpa' + ('_' + suffix if suffix else ''): rpa,
'melody_rca' + ('_' + suffix if suffix else ''): rca,
'melody_oa' + ('_' + suffix if suffix else ''): oa,
}
def test():
ref_pitches = np.array([100, 100, 200, 300]) # in Hz
ref_intervals = np.array([
[0, 1], # in seconds
[2, 3],
[5, 12],
[1, 10]
])
est_pitches = ref_pitches.copy()
est_intervals = ref_intervals.copy()
mir_eval_note_f1(ref_pitches, ref_intervals, ref_pitches, ref_intervals)
"""
result:
(Counter({
'note_onset/precision': 1.0,
'note_onset/recall': 1.0,
'note_onset/f1': 1.0,
'note_offset/precision': 1.0,
'note_offset/recall': 1.0,
'note_offset/f1': 1.0
})
"""
est_pitches = np.array([101, 100, 200, 300]) # in Hz
est_intervals = np.array([
[0.3, 1], # wrong onset, thus on-offset incorrect too.
[2, 3],
[5, 12],
[1, 10]
])
mir_eval_note_f1(est_pitches, est_intervals, ref_pitches, ref_intervals)
# note_onset/f1': 0.75, 'note_offset/f1': 0.75}),
est_pitches = np.array([101, 100, 200, 300]) # in Hz
est_intervals = np.array([
[0, 0.5], # correct onset, on-offset incorrect
[2, 3],
[5, 12],
[1, 10]
])
mir_eval_note_f1(est_pitches, est_intervals, ref_pitches, ref_intervals)
# 'note_onset/f1': 1.0, 'note_offset/f1': 0.75}),
""" Duplicated notes """
est_pitches = ref_pitches.copy()
est_intervals = ref_intervals.copy()
np.append(est_pitches, 100) # ref has 4 notes, while est has correct 4 notes + another 1 note.
np.append(est_intervals, [1.5, 2.5])
mir_eval_note_f1(est_pitches, est_intervals, ref_pitches, ref_intervals)
# 'note_onset/f1': 1.0, 'note_offset/f1': 1.0}),
# The duplicated note is not counted as a false positive
# and thus we do not need to post-process multi-instrument tokens
# to remove duplicated notes in instrument-agnostic metrics.
|