Spaces:
Runtime error
Runtime error
File size: 17,387 Bytes
ebd4e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
from torch.utils.data import DataLoader, Dataset, Sampler
from pathlib import Path
import json
from multiprocessing import Pool
from tqdm import tqdm
from PIL import Image
import random
import numpy as np
import torch
import torchvision
import torchvision.transforms as T
from torch.utils.data.distributed import DistributedSampler
from transformers import T5Tokenizer, BertTokenizer, BertTokenizerFast, CLIPTokenizer
import text_utils
project_dir = Path(__file__).parent.resolve()
workspace_dir = project_dir.parent.parent
dataset_dir = workspace_dir.joinpath('datasets/').resolve()
# coco_dir = dataset_dir.joinpath('COCO')
# vg_dir = dataset_dir.joinpath('VG')
coco_img_dir = dataset_dir.joinpath('COCO/images/')
coco_data_dir = project_dir.parent.joinpath('CLIP-ViL/CLIP-ViL-Direct/caption/data/')
# coco_feature_dir = coco_dir.joinpath('features')
class COCORetrievalDataset(Dataset):
def __init__(self, split='karpathy_train', rank=-1, topk=-1, verbose=True, args=None, mode='train'):
super().__init__()
self.topk = topk
self.verbose = verbose
self.args = args
self.rank = rank
self.mode = mode
# Loading datasets to data
self.source = split
if self.verbose:
print('Data source: ', self.source)
# if self.args.tokenizer is None:
# self.args.tokenizer = self.args.decoder_backbone
# if 'bert' in self.args.tokenizer:
# self.tokenizer = BertTokenizerFast.from_pretrained(
# self.args.tokenizer,
# # max_length=self.args.max_text_length,
# # do_lower_case=self.args.do_lower_case
# )
# elif 'clip' in self.args.tokenizer:
# self.tokenizer = CLIPTokenizer.from_pretrained(
# self.args.tokenizer,
# # max_length=self.args.max_text_length,
# # do_lower_case=self.args.do_lower_case
# )
self.tokenizer = CLIPTokenizer.from_pretrained(
self.args.tokenizer,
# max_length=self.args.max_text_length,
# do_lower_case=self.args.do_lower_case
)
with open(coco_data_dir.joinpath('cocotalk.json')) as f:
self.vocab = list(json.load(f)['ix_to_word'].values())
popped = self.vocab.pop(-1)
assert popped == 'UNK'
if self.verbose:
print('vocab size: ', len(self.vocab))
data_info_path = coco_data_dir.joinpath('dataset_coco.json')
with open(data_info_path) as f:
karpathy_data = json.load(f)
split_rename = {
'train': 'train',
'restval': 'train',
'val': 'val',
'test': 'test'
}
n_images = 0
data = []
# self.vocab = set()
for datum in karpathy_data['images']:
re_split = split_rename[datum['split']]
# if re_split == 'train':
# for d in datum['sentences']:
# self.vocab = self.vocab.union(set(d['tokens']))
if re_split != self.source.split('_')[-1]:
continue
if re_split == 'train':
# for d in datum['sentences']:
# img_id = datum['filename'].split('.')[0]
# new_datum = {
# 'filename': datum['filename'],
# 'img_id': img_id,
# 'sent': d['raw'].strip(),
# 'targets': [d['raw'].strip() for d in datum['sentences']],
# 'is_train': True,
# 'cocoid': datum['cocoid']
# }
# data.append(new_datum)
img_id = datum['filename'].split('.')[0]
new_datum = {
'filename': datum['filename'],
'img_id': img_id,
# 'sent': d['raw'],
# 'targets': [d['raw'].strip() for d in datum['sentences']],
'targets': [" ".join(d['tokens']) for d in datum['sentences']],
'is_train': True,
'cocoid': datum['cocoid']
}
data.append(new_datum)
else:
img_id = datum['filename'].split('.')[0]
new_datum = {
'filename': datum['filename'],
'img_id': img_id,
# 'sent': d['raw'],
# 'targets': [d['raw'].strip() for d in datum['sentences']],
'targets': [" ".join(d['tokens']) for d in datum['sentences']],
'is_train': False,
'cocoid': datum['cocoid']
}
data.append(new_datum)
n_images += 1
if self.verbose:
print(f"{self.source} has {n_images} images")
# print(f"Loaded {len(data)} data from", split)
self.n_gpus = torch.cuda.device_count()
if self.topk > 0:
data = data[:self.topk]
if self.verbose:
print(f"Use only {self.topk} data")
self.data = data
# if self.verbose:
# print("# all sentences:", len(self.data))
if self.args.load_feat:
# feat_dir = coco_dir.joinpath(''
# self.feat_loader = HybridLoader('/scratch-space/CLIP-ViL/CLIP-ViL-Direct/caption/data/cocotalk_clipscore_vis', ext='.npy', in_memory=False)
self.feat_loader = HybridLoader(
coco_data_dir.joinpath('cocotalk_clipscore_vis'),
ext='.npy', in_memory=False)
else:
if 'openai/clip' in self.args.encoder_backbone:
# from transformers import CLIPProcessor
# self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32",
# size=args.image_size,
# do_resize=True,
# do_center_crop=False,
# )
# self.img_transform = lambda image: self.processor.feature_extractor(
# image,
# return_tensors='pt')['pixel_values'][0]
self.image_mean = [0.48145466, 0.4578275, 0.40821073]
self.image_std = [0.26862954, 0.26130258, 0.27577711]
# captioning
# self.img_transform = T.Compose([
# T.Resize((self.args.image_size, self.args.image_size))
# ])
# retrieval
self.img_transform = T.Compose([
T.Resize(self.args.image_size, interpolation=T.functional.InterpolationMode.BICUBIC),
T.CenterCrop(self.args.image_size)
])
self.img_tensor_transform = T.Compose([
# T.RandomCrop(224),
# T.RandomHorizontalFlip(p=0.3),
T.ConvertImageDtype(torch.float),
T.Normalize(self.image_mean, self.image_std)
]
)
# elif 'google/vit' in self.args.encoder_backbone:
# self.image_mean = [0.5, 0.5, 0.5]
# self.image_std = [0.5, 0.5, 0.5]
# self.img_transform = T.Compose([
# # T.PILToTensor(),
# T.Resize((self.args.image_size, self.args.image_size))
# ])
# self.img_tensor_transform = T.Compose([
# # T.RandomCrop(224),
# # T.RandomHorizontalFlip(p=0.3),
# T.ConvertImageDtype(torch.float),
# T.Normalize(self.image_mean, self.image_std)
# ]
# )
def get_negative_text(self, text):
neg_type = random.choice(['repeat', 'remove', 'insert', 'swap', 'shuffle'])
if neg_type == 'repeat':
text = text_utils.repeat(text)
elif neg_type == 'remove':
text = text_utils.remove(text)
elif neg_type == 'insert':
text = text_utils.insert(text, self.vocab)
elif neg_type == 'swap':
text = text_utils.swap(text, self.vocab)
elif neg_type == 'shuffle':
text = text_utils.shuffle(text)
return text, neg_type
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
datum = self.data[idx]
return self.process_datum(datum)
def process_datum(self, datum):
out_dict = {}
###### Image ######
if self.args.load_feat:
cocoid = datum['cocoid']
out_dict['cocoid'] = str(cocoid)
img_feat = self.feat_loader.get(str(cocoid))
out_dict['img_feat'] = torch.from_numpy(img_feat)
else:
img_id = datum['img_id']
out_dict['img_id'] = img_id
if 'train' in datum['filename']:
img_split = 'train2014'
elif 'val' in datum['filename']:
img_split = 'val2014'
img_path = coco_img_dir.joinpath(img_split).joinpath(datum['filename']).with_suffix('.jpg')
assert img_path.exists()
img_path = str(img_path)
out_dict['img_path'] = img_path
img_tensor = torchvision.io.read_image(img_path)
# out_dict['img_tensor'] = img
# img = Image.open(img_path).convert('RGB')
# img_tensor = torch.as_tensor(np.asarray(img))
out_dict['img_tensor'] = self.img_transform(img_tensor)
# self.img_transform(img_tensor)
# out_dict['img_tensor'] = self.img_transform(img)
###### Text #####
# if datum['is_train']:
# sent = datum['sent'].strip()
sent = random.choice(datum['targets'])
# target_ids = self.tokenizer.encode(
# sent, max_length=self.args.gen_max_length, truncation=True)
# assert len(target_ids) <= self.args.gen_max_length, len(target_ids)
out_dict['sent'] = sent
# out_dict['target_ids'] = torch.LongTensor(target_ids)
# out_dict['target_length'] = len(target_ids)
# negative sample
neg_sent, neg_type = self.get_negative_text(sent)
# neg_target_ids = self.tokenizer.encode(
# neg_sent, max_length=self.args.gen_max_length, truncation=True)
# assert len(neg_target_ids) <= self.args.gen_max_length, len(neg_target_ids)
out_dict['neg_sent'] = neg_sent
out_dict['neg_type'] = neg_type
# out_dict['neg_target_ids'] = torch.LongTensor(neg_target_ids)
# out_dict['neg_target_length'] = len(neg_target_ids)
if 'targets' in datum:
out_dict['targets'] = datum['targets']
return out_dict
def collate_fn(self, batch):
batch_entry = {}
B = len(batch)
# if 'target_ids' in batch[0]:
# T_W_L = max(entry['target_length'] for entry in batch)
# target_ids = torch.ones(
# B, T_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
# if 'target_ids' in batch[0]:
# T_W_L = max(entry['target_length'] for entry in batch)
# target_ids = torch.ones(
# B, T_W_L, dtype=torch.long) * self.tokenizer.pad_token_id
targets = []
img_ids = []
img_paths = []
coco_ids = []
if self.args.load_feat:
img_feats = torch.zeros(B, 512, dtype=torch.float)
else:
# imgs = []
img_tensor = torch.zeros(B, 3, self.args.image_size, self.args.image_size, dtype=torch.uint8)
for i, entry in enumerate(batch):
if self.args.load_feat:
coco_ids.append(entry['cocoid'])
img_feats[i] = entry['img_feat']
else:
img_ids.append(entry['img_id'])
img_paths.append(entry['img_path'])
img_tensor[i] = entry['img_tensor']
# if 'target_ids' in entry:
# target_ids[i, :entry['target_length']] = entry['target_ids']
if 'targets' in entry:
targets.append(entry['targets'])
if 'sent' in batch[0]:
# word_mask = target_ids != self.tokenizer.pad_token_id
# target_ids[~word_mask] = -100
# batch_entry['target_ids'] = target_ids
tokenized = self.tokenizer([entry['sent'] for entry in batch], truncation=True, padding=True, return_tensors='pt')
neg_tokenized = self.tokenizer([entry['neg_sent'] for entry in batch], truncation=True, padding=True, return_tensors='pt')
# sent, max_length=self.args.gen_max_length, truncation=True)
batch_entry['text'] = (tokenized.input_ids, tokenized.attention_mask)
batch_entry['neg_text'] = (neg_tokenized.input_ids, neg_tokenized.attention_mask)
if self.args.load_feat:
batch_entry['coco_ids'] = coco_ids
batch_entry['img_feats'] = img_feats
else:
img_tensor = self.img_tensor_transform(img_tensor)
batch_entry['img_id'] = img_ids
batch_entry['img_paths'] = img_paths
batch_entry['img_tensor'] = img_tensor
batch_entry['targets'] = targets
# print('batch created')
# batch_entry['task'] = 'caption'
return batch_entry
# def get_loader(args, split='karpathy_train', mode='train',
# batch_size=32, workers=4, distributed=False, gpu=0,
# topk=-1):
# verbose = (gpu == 0)
# dataset = COCORetrievalDataset(
# split,
# rank=gpu,
# topk=topk,
# verbose=verbose,
# args=args,
# mode=mode)
# # if distributed:
# # sampler = DistributedSampler(dataset)
# # else:
# # sampler = None
# if mode == 'train':
# loader = DataLoader(
# dataset, batch_size=batch_size, shuffle=(sampler is None),
# num_workers=workers, pin_memory=True, sampler=sampler,
# collate_fn=dataset.collate_fn)
# else:
# loader = DataLoader(
# dataset,
# batch_size=batch_size, shuffle=False,
# num_workers=workers, pin_memory=True,
# sampler=sampler,
# collate_fn=dataset.collate_fn,
# drop_last=False)
# # if verbose:
# # loader.evaluator = COCOCaptionEvaluator()
# # loader.task = 'caption'
# return loader
# class COCOCaptionEvaluator:
# def __init__(self):
# import language_evaluation
# self.evaluator = language_evaluation.CocoEvaluator(verbose=False)
# def evaluate(self, predicts, answers):
# results = self.evaluator.run_evaluation(predicts, answers)
# return results
import six
import os
import h5py
class HybridLoader:
"""
If db_path is a director, then use normal file loading
If lmdb, then load from lmdb
The loading method depend on extention.
in_memory: if in_memory is True, we save all the features in memory
For individual np(y|z)s, we don't need to do that because the system will do this for us.
Should be useful for lmdb or h5.
(Copied this idea from vilbert)
"""
def __init__(self, db_path, ext='.npy', in_memory=False):
self.db_path = db_path
self.ext = ext
if self.ext == '.npy':
self.loader = lambda x: np.load(six.BytesIO(x))
else:
self.loader = lambda x: np.load(six.BytesIO(x))['feat']
# if db_path.endswith('.lmdb'):
# self.db_type = 'lmdb'
# self.lmdb = lmdbdict(db_path, unsafe=True)
# self.lmdb._key_dumps = DUMPS_FUNC['ascii']
# self.lmdb._value_loads = LOADS_FUNC['identity']
# elif db_path.endswith('.pth'): # Assume a key,value dictionary
# self.db_type = 'pth'
# self.feat_file = torch.load(db_path)
# self.loader = lambda x: x
# print('HybridLoader: ext is ignored')
# elif db_path.endswith('h5'):
# self.db_type = 'h5'
# self.loader = lambda x: np.array(x).astype('float32')
# else:
# self.db_type = 'dir'
self.in_memory = in_memory
if self.in_memory:
self.features = {}
def get(self, key):
# if self.in_memory and key in self.features:
# # We save f_input because we want to save the
# # compressed bytes to save memory
# f_input = self.features[key]
# elif self.db_type == 'lmdb':
# f_input = self.lmdb[key]
# elif self.db_type == 'pth':
# f_input = self.feat_file[key]
# elif self.db_type == 'h5':
# f_input = h5py.File(self.db_path, 'r')[key]
# else:
# f_input = open(os.path.join(
# self.db_path, key + self.ext), 'rb').read()
f_input = open(os.path.join(
self.db_path, key + self.ext), 'rb').read()
if self.in_memory and key not in self.features:
self.features[key] = f_input
# load image
feat = self.loader(f_input)
return feat
|