Spaces:
Running
Running
File size: 22,394 Bytes
d1ae858 fa85a62 d1ae858 fa85a62 d1ae858 fa85a62 d1ae858 fa85a62 d1ae858 fa85a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import time
import os
import json
from datetime import datetime
from dotenv import load_dotenv
from enhanced_scraper import EnhancedRedditScraper
# Page configuration
st.set_page_config(
page_title="Advanced Reddit Scraper",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Add custom CSS
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
margin-bottom: 1rem;
}
.subheader {
font-size: 1.5rem;
color: #ff4500;
margin-bottom: 1rem;
}
.card {
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
border: 1px solid #ddd;
}
.small-text {
font-size: 0.8rem;
color: #777;
}
.stButton button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Session state initialization
if 'results' not in st.session_state:
st.session_state.results = None
if 'scraper' not in st.session_state:
st.session_state.scraper = None
if 'search_history' not in st.session_state:
st.session_state.search_history = []
if 'filters' not in st.session_state:
st.session_state.filters = {
'min_score': 0,
'date_from': None,
'date_to': None,
'show_only_with_comments': False
}
# Functions
def initialize_scraper(client_id, client_secret, user_agent):
"""Initialize the scraper with API credentials"""
try:
scraper = EnhancedRedditScraper(
client_id=client_id,
client_secret=client_secret,
user_agent=user_agent
)
st.session_state.scraper = scraper
return True
except Exception as e:
st.error(f"Failed to initialize scraper: {str(e)}")
return False
def run_search(subreddits, keywords, limit, sort_by, include_comments,
include_selftext, min_score):
"""Run the search with provided parameters"""
if not st.session_state.scraper:
st.error("Scraper not initialized. Please set up API credentials first.")
return False
try:
with st.spinner("Scraping Reddit..."):
if len(subreddits) == 1:
# Single subreddit search
results = st.session_state.scraper.scrape_subreddit(
subreddit_name=subreddits[0],
keywords=keywords,
limit=limit,
sort_by=sort_by,
include_comments=include_comments,
include_selftext=include_selftext,
min_score=min_score
)
st.session_state.results = {subreddits[0]: results}
else:
# Multiple subreddit search
results = st.session_state.scraper.search_multiple_subreddits(
subreddits=subreddits,
keywords=keywords,
limit=limit,
sort_by=sort_by,
include_comments=include_comments,
include_selftext=include_selftext,
min_score=min_score
)
st.session_state.results = results
# Add to search history
search_info = {
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'subreddits': subreddits,
'keywords': keywords,
'total_results': sum(len(results) for results in st.session_state.results.values())
}
st.session_state.search_history.append(search_info)
return True
except Exception as e:
st.error(f"Search failed: {str(e)}")
return False
def filter_results(results, filters):
"""Apply filters to results"""
filtered = {}
for subreddit, posts in results.items():
filtered_posts = []
for post in posts:
# Apply score filter
if post['score'] < filters['min_score']:
continue
# Apply date filters if set
if filters['date_from'] or filters['date_to']:
post_date = datetime.strptime(post['created_utc'], '%Y-%m-%d %H:%M:%S')
if filters['date_from'] and post_date < filters['date_from']:
continue
if filters['date_to'] and post_date > filters['date_to']:
continue
# Filter for posts with comments if requested
if filters['show_only_with_comments'] and (
'matching_comments' not in post or not post['matching_comments']):
continue
filtered_posts.append(post)
filtered[subreddit] = filtered_posts
return filtered
def create_data_visualization(results):
"""Create data visualizations based on results"""
# Combine all results
all_posts = []
for subreddit, posts in results.items():
for post in posts:
post['subreddit'] = subreddit
all_posts.append(post)
if not all_posts:
st.warning("No data to visualize.")
return
df = pd.DataFrame(all_posts)
# Create tabs for different visualizations
viz_tab1, viz_tab2, viz_tab3 = st.tabs(["Score Distribution", "Posts by Subreddit", "Time Analysis"])
with viz_tab1:
st.subheader("Score Distribution")
fig = px.histogram(df, x="score", color="subreddit", nbins=20,
title="Distribution of Post Scores")
st.plotly_chart(fig, use_container_width=True)
with viz_tab2:
st.subheader("Posts by Subreddit")
subreddit_counts = df['subreddit'].value_counts().reset_index()
subreddit_counts.columns = ['subreddit', 'count']
fig = px.bar(subreddit_counts, x='subreddit', y='count',
title="Number of Matching Posts by Subreddit")
st.plotly_chart(fig, use_container_width=True)
with viz_tab3:
st.subheader("Time Analysis")
# Convert created_utc to datetime if it's not already
if 'created_utc' in df.columns:
df['created_date'] = pd.to_datetime(df['created_utc'])
df['hour_of_day'] = df['created_date'].dt.hour
fig = px.histogram(df, x="hour_of_day", nbins=24,
title="Posts by Hour of Day")
fig.update_layout(xaxis_title="Hour of Day (UTC)")
st.plotly_chart(fig, use_container_width=True)
def main():
# Header
st.markdown('<div class="main-header">Advanced Reddit Scraper</div>', unsafe_allow_html=True)
st.markdown('<div class="subheader">Web Scraping Development Environment</div>', unsafe_allow_html=True)
# Sidebar for configuration
with st.sidebar:
st.header("Configuration")
# Credentials
with st.expander("Reddit API Credentials", expanded=not st.session_state.scraper):
st.markdown("""
### Reddit API Credentials
Please enter your Reddit API credentials below. You can obtain these from the
[Reddit Developer Portal](https://www.reddit.com/prefs/apps).
If you don't have your own credentials, you can leave these fields empty and the app
will try to use credentials from environment variables if available.
""")
# Try to load from .env file
load_dotenv()
default_client_id = os.environ.get("REDDIT_CLIENT_ID", "")
default_client_secret = os.environ.get("REDDIT_CLIENT_SECRET", "")
default_user_agent = os.environ.get("REDDIT_USER_AGENT", "RedditScraperApp/1.0")
client_id = st.text_input("Client ID", value=default_client_id)
client_secret = st.text_input("Client Secret", value=default_client_secret, type="password")
user_agent = st.text_input("User Agent", value=default_user_agent)
save_as_env = st.checkbox("Save credentials for future use (saved in .env file)", value=False)
if st.button("Initialize API Connection"):
# Save credentials if requested
if save_as_env and (client_id or client_secret):
env_vars = []
if client_id:
env_vars.append(f"REDDIT_CLIENT_ID={client_id}")
if client_secret:
env_vars.append(f"REDDIT_CLIENT_SECRET={client_secret}")
if user_agent and user_agent != "RedditScraperApp/1.0":
env_vars.append(f"REDDIT_USER_AGENT={user_agent}")
# Write to .env file
with open(".env", "w") as f:
f.write("\n".join(env_vars))
st.success("Credentials saved to .env file")
if initialize_scraper(client_id, client_secret, user_agent):
st.success("API connection established!")
# Set environment variables for the current session
os.environ["REDDIT_CLIENT_ID"] = client_id
os.environ["REDDIT_CLIENT_SECRET"] = client_secret
os.environ["REDDIT_USER_AGENT"] = user_agent
# Search Parameters
st.subheader("Search Parameters")
# Multiple subreddit input
subreddits_input = st.text_area("Subreddits (one per line)", value="cuny\ncollegequestions")
subreddits = [s.strip() for s in subreddits_input.split("\n") if s.strip()]
# Keywords input
keywords_input = st.text_area("Keywords (one per line)", value="question\nhelp\nconfused")
keywords = [k.strip() for k in keywords_input.split("\n") if k.strip()]
# Other parameters
limit = st.slider("Number of posts to scan per subreddit", 10, 200, 50)
sort_by = st.selectbox("Sort posts by", ["hot", "new", "top", "rising"], index=0)
include_selftext = st.checkbox("Include post content in search", value=True)
include_comments = st.checkbox("Include comments in search", value=True)
min_score = st.slider("Minimum score (upvotes)", 0, 1000, 0)
# Action buttons
search_col, clear_col = st.columns(2)
with search_col:
search_button = st.button("Run Search", type="primary", use_container_width=True)
with clear_col:
clear_button = st.button("Clear Results", type="secondary", use_container_width=True)
# Main interface tabs
tab1, tab2, tab3, tab4 = st.tabs(["Results", "Visualizations", "Export", "History"])
# Handle Actions
if clear_button:
st.session_state.results = None
st.rerun()
if search_button:
if not subreddits:
st.error("Please enter at least one subreddit to search.")
elif not keywords:
st.error("Please enter at least one keyword to search.")
else:
success = run_search(
subreddits=subreddits,
keywords=keywords,
limit=limit,
sort_by=sort_by,
include_comments=include_comments,
include_selftext=include_selftext,
min_score=min_score
)
if success:
st.success(f"Search completed! Found results in {len(st.session_state.results)} subreddits.")
# Tab 1: Results
with tab1:
if st.session_state.results:
# Post-search filters
st.markdown('<div class="card">', unsafe_allow_html=True)
st.subheader("Filter Results")
filter_col1, filter_col2, filter_col3 = st.columns(3)
with filter_col1:
st.session_state.filters['min_score'] = st.number_input(
"Minimum score", min_value=0, value=st.session_state.filters['min_score'])
with filter_col2:
st.session_state.filters['date_from'] = st.date_input(
"From date", value=None)
with filter_col3:
st.session_state.filters['date_to'] = st.date_input(
"To date", value=None)
st.session_state.filters['show_only_with_comments'] = st.checkbox(
"Show only posts with matching comments",
value=st.session_state.filters['show_only_with_comments'])
apply_filters = st.button("Apply Filters")
st.markdown('</div>', unsafe_allow_html=True)
# Apply filters if requested
if apply_filters:
filtered_results = filter_results(st.session_state.results, st.session_state.filters)
else:
filtered_results = st.session_state.results
# Show results for each subreddit
total_posts = sum(len(posts) for posts in filtered_results.values())
st.subheader(f"Search Results ({total_posts} posts found)")
for subreddit, posts in filtered_results.items():
with st.expander(f"r/{subreddit} - {len(posts)} posts", expanded=len(filtered_results) == 1):
if posts:
# Create a dataframe for easier viewing
df = pd.DataFrame([{
'Title': p['title'],
'Score': p['score'],
'Comments': p['num_comments'],
'Date': p['created_utc'],
'URL': p['permalink']
} for p in posts])
st.dataframe(df, use_container_width=True)
# Show detailed post view
st.subheader("Post Details")
post_index = st.slider(f"Select post from r/{subreddit}",
0, max(0, len(posts)-1), 0)
if len(posts) > 0:
post = posts[post_index]
# Display post details in a card
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown(f"### {post['title']}")
st.markdown(f"**Author:** u/{post['author']} | **Score:** {post['score']} | **Comments:** {post['num_comments']}")
st.markdown(f"**Posted on:** {post['created_utc']}")
st.markdown(f"**URL:** [{post['url']}]({post['url']})")
if post['text']:
st.markdown("##### Post Content")
with st.container():
show_content = st.checkbox("Show full content", key=f"content_{subreddit}_{post_index}")
if show_content:
st.text(post['text'])
# Show matching comments if available
if 'matching_comments' in post and post['matching_comments']:
st.markdown(f"##### Matching Comments ({len(post['matching_comments'])})")
with st.container():
show_comments = st.checkbox("Show comments", value=True, key=f"comments_{subreddit}_{post_index}")
if show_comments:
for i, comment in enumerate(post['matching_comments']):
st.markdown(f"**u/{comment['author']}** ({comment['score']} points) - {comment['created_utc']}")
st.text(comment['body'])
if i < len(post['matching_comments']) - 1:
st.divider()
st.markdown('</div>', unsafe_allow_html=True)
else:
st.info(f"No posts found in r/{subreddit} matching the current filters.")
else:
st.info("Configure the search parameters and click 'Run Search' to begin.")
# Show help for first-time users
with st.expander("Help & Tips"):
st.markdown("""
### Getting Started with Reddit Scraper
1. **Set up API credentials** in the sidebar (already pre-filled with sample credentials)
2. **Enter subreddits** you want to search (one per line)
3. **Enter keywords** to filter posts (one per line)
4. Adjust other settings as needed
5. Click **Run Search** to start
### Tips for Effective Searches
- Use specific keywords to narrow down results
- Try searching multiple related subreddits for better coverage
- Include comments in search to find discussions where your keywords appear in replies
- Use the visualization tab to analyze trends in the results
- Export your results for further analysis in other tools
""")
# Tab 2: Visualizations
with tab2:
if st.session_state.results:
# Apply current filters to visualization data
filtered_results = filter_results(st.session_state.results, st.session_state.filters)
create_data_visualization(filtered_results)
else:
st.info("Run a search to generate visualizations.")
# Tab 3: Export
with tab3:
if st.session_state.results:
st.subheader("Export Results")
# Apply current filters
filtered_results = filter_results(st.session_state.results, st.session_state.filters)
# Format selection
export_format = st.radio("Export format", ["CSV", "JSON"], horizontal=True)
# Filename input
timestamp = time.strftime("%Y%m%d_%H%M%S")
default_filename = f"reddit_scrape_{timestamp}"
filename = st.text_input("Filename (without extension)", value=default_filename)
# Export button
export_clicked = st.button("Export Data", type="primary")
if export_clicked:
try:
# Combine all results into a flat list for export
all_results = []
for subreddit, posts in filtered_results.items():
for post in posts:
post_copy = post.copy()
post_copy['subreddit'] = subreddit
all_results.append(post_copy)
# Save results based on selected format
if export_format == "CSV":
# Convert to dataframe and save
df = pd.DataFrame(all_results)
# Handle nested structures for CSV
if 'matching_comments' in df.columns:
df['matching_comments'] = df['matching_comments'].apply(
lambda x: json.dumps(x) if isinstance(x, list) else ''
)
csv_file = f"{filename}.csv"
df.to_csv(csv_file, index=False)
# Create download button
with open(csv_file, 'rb') as f:
st.download_button(
label="Download CSV",
data=f,
file_name=csv_file,
mime="text/csv"
)
st.success(f"Exported {len(all_results)} posts to {csv_file}")
else: # JSON
json_file = f"{filename}.json"
with open(json_file, 'w') as f:
json.dump(all_results, f, indent=2)
# Create download button
with open(json_file, 'rb') as f:
st.download_button(
label="Download JSON",
data=f,
file_name=json_file,
mime="application/json"
)
st.success(f"Exported {len(all_results)} posts to {json_file}")
except Exception as e:
st.error(f"Export failed: {str(e)}")
else:
st.info("Run a search to export results.")
# Tab 4: History
with tab4:
st.subheader("Search History")
if st.session_state.search_history:
for i, search in enumerate(reversed(st.session_state.search_history)):
with st.expander(f"Search #{len(st.session_state.search_history)-i}: {search['timestamp']} ({search['total_results']} results)"):
st.markdown(f"**Subreddits:** {', '.join(search['subreddits'])}")
st.markdown(f"**Keywords:** {', '.join(search['keywords'])}")
st.markdown(f"**Results:** {search['total_results']} posts")
st.markdown(f"**Time:** {search['timestamp']}")
else:
st.info("No search history yet.")
if __name__ == "__main__":
main()
|